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Functions in functional languages have a single elimination form — application — and cannot be compared,
hashed, or subjected to other non-application operations. These operations can be approximated via defunc-
tionalization: functions are replaced with first-order data and calls are replaced with invocations of a dispatch
function. Operations such as comparison may then be implemented for these first-order data to approximate
e.g. deduplication of continuations in algorithms such as unbounded searches. Unfortunately, this encoding is
tedious, imposes a maintenance burden, and obfuscates the affected code.

We introduce an alternative in intensional functions, a language feature which supports the definition of
non-application operations in terms of a function’s definition site and closure-captured values. First-order
data operations may be defined on intensional functions without burdensome code transformation. We give
an operational semantics and type system and prove their formal properties. We further define intensional
monads, whose Kleisli arrows are intensional functions, enabling monadic values to be similarly subjected to
additional operations.
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1 Introduction
Defunctionalization as proposed by Reynolds [Reynolds 1972] is the process of transforming a
program to replace first-class functions with non-function symbol values. The transformation
also provides a dispatch function which recovers the behavior of a function given its symbol.
Higher-order function calls are replaced with invocations of this dispatch function. While defunc-
tionalization has a variety of uses in program analysis and compiler design, we focus here on its
application as a programmer-managed design pattern in functional software engineering [Danvy
and Nielsen 2001; Koppel 2019]. Programmers may defunctionalize surface-level code so that
operations unavailable to functions, such as equality or serialization, can be defined on first-order
function symbols. This is of particular relevance to algorithms representing work as continuations:
equality might be used to deduplicate continuation symbols while serialization might be used to
persist them for later resumption or render them for transmission across a distributed system.
While defunctionalization is a powerful tool, its manual application to surface-level code is

unfortunately tedious, error-prone, and quite obfuscating. Projects such as CloudHaskell [Epstein
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et al. 2011] and Scala’s Spores [Miller et al. 2014] have addressed these weaknesses specifically for
the case of serialization. Both projects allow approrpiately-annotated functions in their respective
languages to be serialized and transmitted to other processes with minimal syntactic overhead. As
these projects focus on serialization, however, the functions’ serialized closures are not accessible
to programmers with any meaningful type information.
This paper introduces intensional functions: functions with language-level support for general

user-defined operations over dynamic closures with programmer-visible types. These functions
are intensional in that they can be inspected at runtime in terms of their construction: intensional
functions are equipped with an eliminator which yields the program point at which the function
was defined and another eliminator which produces the values it has captured in closure. In contrast,
traditional functions are extensional: they cannot be examined at runtime and can only be called.
Additionally, intensional functions carry programmer-specified proofs (via type constraints)

about their closure-captued values. This information permits a programmer to define operations
on intensional functions in terms of these proofs: equality on intensional functions, for instance,
may be defined in terms of equality on the contents of their closures (with some care as described
in Section 2.3). Other operations such as sorting and hashing may be defined similarly. Proofs
captured by an intensional function are specified by the programmer, so this model adapts to the
needs of each program’s problem domain. Unlike existing approaches, there are no restrictions on
intensional functions’ closures other than user-specified type constraints.
Section 2 gives a description of intensional functions by example. The code in that section

is written using the syntax of IntensionalFunctions, a Haskell language extension we have
implemented for version 9.2 of the Glasgow Haskell Compiler (GHC). Throughout this paper,
we refer to the Haskell language with this extension enabled as “Haskell+ItsFn”. We find that a
deductive closure algorithm of the Plume program analysis [Fachinetti et al. 2020] written using
intensional functions in Haskell+ItsFn requires 25% fewer lines of code and is subjectively more
readable than the same algorithm written using defunctionalization in Haskell. We note that our
implementation is a proof of concept: it illustrates the coherence and ergonomic convenience of
intensional functions but does not integrate them fully into the language runtime, resulting in
significant slowdown (∼3x in our experience). We believe this poor performance to be a consequence
of engineering rather than theory and discuss Haskell+ItsFn in greater detail in Section 6.
Because intensional functions are both general and language-supported, we are also able to

explore use cases which are infeasible or impossible with existing approaches. Section 3 briefly
examines intensional monads, a reconstruction of the functor hierarchy using intensional func-
tions. Just as extensional monad expressions represent computations as terms, intensional monad
expressions represent computations as terms subject to constraints (such as Haskell’s Ord).
While our motivating examples are written in Haskell+ItsFn, the underlying principles of

intentional functions are not language-specific. Sections 4 and 5 distill these principles to a core
language, 𝜆ITS, and use it to prove the equivalence of intensional functions that have the same
program point and environment. We give a type system for 𝜆ITS based upon established techniques
and prove it sound in Appendix B.

In summary, the primary contributions of this paper are

• a presentation and qualitative analysis of the expressive power of intensional functions
(Section 2);

• the development of intensional monads, a reconstruction of the functor hierarchy using
intensional functions (Section 3);

• a formal treatment of intensional functions with a correctness proof for conservative in-
language function equivalence (Sections 4 and 5); and
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1 import Data.Map (Map)
2 import qualified Data.Map as Map
3

4 data Cache a b = Cache (a -> b) (Map a b)
5

6 makeCache :: (a -> b) -> Cache a b
7 makeCache fn = Cache fn Map.empty
8

9 apCache :: (Ord a) => Cache a b -> a -> (b, Cache a b)
10 apCache cache@(Cache fn m) arg =
11 case Map.lookup arg m of
12 Just answer -> (answer, cache)
13 Nothing ->
14 let answer = fn arg in
15 (answer, Cache fn $ Map.insert arg answer m)

Fig. 1. Simple Caching Framework (Haskell)

1 example1 =
2 let c0 = makeCache (\n -> n + 1) in
3 let (x,c1) = apCache c0 4 in
4 let (y,c2) = apCache c1 4 in
5 x == y -- True

Fig. 2. Cached Integer Function (Haskell)

Fig. 3. Functional Caching Failure

1 example2 =
2 let c0 = makeCache (\f -> f $ f 0) in
3 let inc = \n -> n + 1 in
4 let (x,c1) = apCache c0 inc in
5 -- ^^ Type error: no Ord for function
6 ...

1 data Symbol = Inc | Plus Int | Twice Symbol
2 deriving (Eq, Ord)
3 example3 =
4 let be Inc = \n -> n + 1
5 be (Plus k) = \n -> k + n
6 be (Twice f) = \n -> be f $ be f $ n in
7 let c0 = makeCache (\f -> be f $ be f $ 0) in
8 let (x,c1) = apCache c0 Inc in -- 2
9 let (y,c2) = apCache c1 Inc in -- 2
10 let (z,c3) = apCache c2 (Twice Inc) in -- 4
11 x == y -- True

Fig. 4a. Defunctionalized Caching (Haskell)

1 example4 =
2 let inc = \%Ord n -> n + 1 in
3 let plus = \%Ord k n -> k + n in
4 let twice = \%Ord f n -> f %$ f %$ n in
5 let c0 = makeCache (\f -> f %$ f %$ 0) in
6 let (x,c1) = apCache c0 inc in -- 2
7 let (y,c2) = apCache c1 inc in -- 2
8 let (z,c3) = apCache c2 (twice %$ inc) in -- 4
9 x == y -- True

Fig. 4b. Caching Intensional Functions (Haskell+ItsFn)

• a discussion of the implementation of the IntensionalFunctions GHC extension as well as
a program analysis artifact written using it (Section 6).

We discuss related work in Section 7 and conclude in Section 8.

2 Intensional Functions
This section illustrates intensional functions by example.We contrast how the caching of functions is
accomplished via defunctionalization and via intensional functions. We then illustrate the properties
of intensional functions and how operations are defined on them. Unless otherwise indicated, these
examples can be compiled using our GHC extension, IntensionalFunctions, which we discuss
in Section 6.

2.1 Defunctionalization by Example
Consider the Haskell code in Figure 1, which implements a generic caching mechanism for functions.
A value of type Cache a b is a function together with a dictionary which maps the function’s domain
values a to codomain values b. Figure 2 illustrates how this code might be used. Crucially, the domain
of the function to be cached is constrained to be orderable; this is a requirement of the dictionary
storing the cached values. This otherwise-generic caching mechanism is thus inapplicable to
higher-order functions, which lack an Ord instance, as exemplified in Figure 3.

A canonical approximation of function comparison is defunctionalization. We define a data type
identifying each function in our problem domain and use that data type in lieu of the original
function. We also define a dispatch function which can recover each original function’s behavior

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.



274:4 Zachary Palmer, Nathaniel Wesley Filardo, and Ke Wu

from this data type. In Figure 4a, for instance, the increment function from Figure 3 has been
replaced by the Inc constructor from the Symbol data type. The be function recovers the behavior
represented by a Symbol. As Symbol is a first-order data type, it admits an Ord instance.

Defunctionalization imposes two significant burdens on the programmer. First: all call sites which
previously invoked an implicated function must now be modified to translate the defunctionalized
symbol. The f function symbol on line 7 of Figure 4a must be translated before it can be called. This
transformation can be far-reaching: any function which might reach a transformed call site must
itself be represented by a defunctionalized symbol, so its call sites must be transformed, and so on.
Second: the environments of partially-applied functions must be enumerated. The Symbol type

in Figure 4a represents defunctionalized functions of type Int -> Int. A partially applied addition,
such as (\k n -> k + n) 4, can be represented as Plus 4 using the Plus constructor of Symbol on line 1
of Figure 4a. Note that the translation of Plus on line 5 must acknowledge the difference between
non-local values captured in closure (here, k) and parameters that are expected to be applied after
translation (here, n). This is also reflected in the definition of Symbol on line 1, where the types of
those closure-captured values (here, Int) must be enumerated.

This enumeration becomes especially tedious when a defunctionalized function’s environment
itself contains a function, as this requires the recursive defunctionalization of e.g. the Symbol type
itself. That is, defunctionalization must be deep: functions can refer to non-local function values, so
function environments must be defunctionalized as well. In Figure 4a, the Twice constructor carries
a Symbol in lieu of the Int -> Int value that represents our actual intent.
Both CloudHaskell and Scala Spores provide language-level support for ameliorating these

burdens when serializing functions for transmission to other processes while introducing minimal
syntactic overhead within their respective languages. These systems are typed insofar as they can
ensure safe serialization of closure-captured values. (CloudHaskell, for instance, produces a type
error if closure-captured values are not statically defined.) However, these systems are limited to
the task of serialization; programmers cannot access typed representations of closure-captured
values. We next illustrate how intensional functions allow programmers to choose type constraints
for closure-captured values and use this information to operate on functions.

2.2 Intensional Functions by Example
The problem in Figure 3 is that the argument passed to apCache, a function, does not have an Ord

instance. Defunctionalization replaces this function with first-order data. We present an alternative:
defining a form of function whose properties can be inspected to provide the same constraint-
satisfying behavior (such as Ord) without closure type enumeration or definitional boilerplate.

In Haskell+ItsFn—Haskell with our IntensionalFunctions extension enabled — the syntax of
intensional functions differs from that of extensional functions in two ways. An intensional function
starts with the symbol \% (rather than \); it also requires a constraint function before the list of
parameters. A constraint function is a type of kind Type -> Constraint, such as Eq or Ord [Bolingbroke
2011]. This constraint function is both positive and negative: all values in closure must conform
to it, but the resulting intensional function is guaranteed to conform to it as well. For instance,
\%Eq x -> (x,z) represents an intensional function for constructing a tuple using its parameter and a
non-local variable z. The Eq here indicates that the type of zmust conform to Eq, but it also guarantees
that the type of the function itself conforms to Eq. Thus, let f = \%Eq x -> (x,z) in f == f typechecks
(and evaluates to True) as long as Eq z holds true. Intensional functions are applied using the %@ (left-
associative) and %$ (right-associative) application operators. For instance, (\%Eq x -> x + 1) %@ 3

evaluates to 4. Application does not make use of intensionality.
Momentarily setting aside how intensional functions satisfy their constraint functions, Figure 4b

illustrates how we can use these intensional functions to address the problem presented in Figure 3.
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The inc function defined on line 2 of Figure 4b is an intensional increment function which conforms
to Ord; it is therefore a suitable argument to the apCache function. This Ord instance allows apCache to
recognize inc in the second call on line 7 and retrieve its associated value from the cache.

2.3 Comparing Intensional Functions
We now examine how intensional functions satisfy their constraint functions. Recall from above
that the constraint function of an intensional function must be satisfied by all values captured in
its closure; for instance, an Eq intensional function requires that all values it captures in closure
satisfy Eq. We can use this information about the intensional function’s closure to provide an Eq

definition for the intensional function itself.
At runtime, extensional functions can only be examined in terms of the behavior exhibited

by their sole eliminator: application. Intensional functions, by contrast, have three eliminators:
application, identification, and inspection. The latter two eliminators yield the program point at
which the function was defined and the environment it captured in closure, respectively.

We define an approximation of equality on intensional functions by comparing the program
points and environments of these functions for equality as in Figure 5. The type a ->%Eq b refers to
an intensional function with domain a, codomain b, and constraint function Eq. The type produced
by itsIdentify contains entirely first-order data, allowing an Eq instance to be defined. itsInspect
produces a list of GADT wrappers, each carrying a proof that its contents are Eq. The Eq instance for
an intensional function produces true if the identities and closures of the two functions are equal.

1 instance Eq (a ->%Eq b) where
2 f == g = itsIdentify f == itsIdentify g &&
3 itsInspect f == itsInspect g

Fig. 5. Intensional Function Equality

1 itsEqConst :: forall a b. (Typeable a, Eq a)
2 => a ->%Eq b ->%Eq a
3 itsEqConst = \%Eq x y -> x
4

5 itsConst :: forall c a b. (Typeable a, c a)
6 => a ->%c b ->%c a
7 itsConst = \%c x y -> x

Fig. 6. Intensional Function Polymorphism

We prove correct this form of conservative
equality — that intensional functions which are
considered equal will always have the same
behavior — in Section 5.3. We focus on conser-
vative equality and comparison here for illustra-
tion, but the set of constraint functions which
may be implemented for intensional functions
is open-ended. A Hashable implementation, for
instance, would follow the same pattern as Eq

and allow intensional functions to be used as
keys in a hashtable.

2.4 Polymorphism
The above examples are monomorphic for sim-
plicity, but polymorphism is possible with both
traditional defunctionalization (e.g. via GADT function symbols [Pottier and Gauthier 2004, 2006a])
and intensional functions. In addition to polymorphism of the domain and codomain, intensional
functions must contend with polymorphism of constraint functions and closures.

2.4.1. Parametric Polymorphism

Polymorphism on the domain and codomain of an intensional function is relatively straightforward.
Consider applying the intensional constant value function itsEqConst as defined on line 3 of Figure 6.
The application of this function, e.g. itsEqConst %@ "A", works in the same fashion as its extensional
counterpart: the type of itsEqConst is instantiated and a newly-created type variable is unified with
the type of the argument "A". Thus, this expression has type b ->%Eq String. The type signature of
itsEqConst, however, deserves some attention.

The key difference between this intensional application and its extensional equivalent const "A"

is that the argument of itsEqConst is captured in closure. As a result, the intensional function
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1 longerThan :: forall a. (Typeable a, Eq a)
2 => [a] ->%Eq Int ->%Eq Bool
3 longerThan = \%Eq xs n -> length xs > n
4

5 example :: Bool
6 example = (longerThan %@ ["A"]) == (longerThan %@ [4])

1 example :: forall a. (Typeable a, Eq a)
2 => Bool ->%Eq a ->%Eq a ->%Eq a
3 example = \%Eq b ->
4 let f :: forall b. (Typeable b, Eq b)
5 => b ->%Eq b ->%Eq b
6 f = \%Eq x y -> if b then x else y
7 in \%Eq x y -> f %@ y %@ x

Fig. 7. Comparing Intensional Functions Fig. 8. Polymorphic Closure Type Error

requires it to conform to the Eq constraint function. (It must also be Typeable, ensuring a runtime
representation of its type. We discuss this requirement in Section 2.4.2.) We must therefore bound
the type parameter a to ensure that it meets this requirement. We are not required to prove Eq b,
however, because no values of type b are captured in closure: once the b value is supplied, the
function’s body is executed.1

Figure 6 also illustrates polymorphism in the constraint function of an intensional function. The
definition of itsConst generalizes itsEqConst to work with any constraint function c. Any constraint
function may be applied to itsConst either explicitly via type application (as in itsConst @Eq) or by
type inference. The closure-captured argument must conform to c (thus the (c a) precondition),
but no other special handling is required. This is a natural consequence of the ConstraintKinds
language extension which was introduced to GHC in version 7.4 [Bolingbroke 2011].

2.4.2. Typeable Environments

In addition to conforming to the constraint function specified by the intensional function, any
closure-captured valuesmust also be Typeable. To seewhy, consider the example in Figure 7. On line 6,
both sides of the comparison have the type Int ->%Eq Bool. Both ["A"] and [4] are captured in their
respective closures and have instances for Eq. Nonetheless, the environments of these functions are
not comparable to each other. More generally, this situation arises when a polymorphic intensional
function captures a value in closure whose type (a) contains an instantiated type variable and (b) is
no longer represented in the resulting function type.
To resolve this issue, we require Typeable of all values captured in closure. When two closures

are e.g. compared for equality, their types are checked at runtime. In Figure 7, for instance, example
evaluates to False: we do not take two functions with differently-typed environments to be equal.2

Rejecting environment polymorphism Although the domain, codomain, and constraint function
of an intensional function may be polymorphic, closure-captured values may not. This restriction
is a consequence of limitations in GHC’s type system and is a weakness of intensional functions in
comparison to their extensional equivalents. Thankfully, this is not a common problem in practice.
This monomorphic closure restriction is illustrated by the convoluted code in Figure 8, which

does not typecheck. The type error arises on line 7 where f, which is polymorphic, is captured in
the closure of the anonymous function. GHC typechecks the analogous extensional code.

We are unconcerned about this limitation for two reasons. The first is that, even if polymorphic
local bindings could be captured in the closure of an intensional function, there would be no effective
way to satisfy the intensional function’s constraint function due to a fundamental limitation of
GHC’s type system. In Figure 8, for instance, we would require an Eq instance for the (polymorphic)

1The constraint Eq a is due to the possibility that a value of type a is captured in closure. For usability, our implementation
imposes such constraints only at call sites where such closures are actually built. We discuss this in Section 6.2.
2Constraint functions defining only unary operators (such as Hashable) shouldn’t require Typeable, but composition of
constraint functions is non-trivial as of GHC version 9.2. We require Typeable of all closure-captured values for ease of use.
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1 combineSpans :: Search ()
2 combineSpans = intensional Ord do
3 (x,i,j) <- lookup AllSpans ()
4 (y,k) <- lookup SpansStartingAt j
5 z <- lookup GrammarCombining (x,y)
6 insert AllSpans () (z,i,k)
7 insert SpansStartingAt i (z,k)

Fig. 9a. Intensional Search (Sugared)

1 combineSpans :: Search ()
2 combineSpans =
3 itsBind (lookup AllSpans ()) %$ \%Ord (x,i,j) ->
4 itsBind (lookup SpansStartingAt j) %$ \%Ord (y,k) ->
5 itsBind (lookup GrammarCombining (x,y)) %$ \%Ord z ->
6 itsBind (insert AllSpans () (z,i,k)) %$ \%Ord () ->
7 insert SpansStartingAt i (z,k)

Fig. 9b. Intensional Search (Desugared)

type of f. GHC does not presently permit typeclass instances for polymorphic types because
inferring uses of such typeclass instances is extremely difficult [Serrano et al. 2020, 2018].
Our second reason for being unconcerned about this limitation is more practical. The authors

of the OutsideIn(X) type system [Vytiniotis et al. 2011] demonstrated that local polymorphic let
bindings are uncommon in practice. In that work, the authors reported that fewer than 4% of the
modules in GHC’s standard libraries relied upon local polymorphic bindings and fewer than 12%
of Hackage packages had any modules which did so. This suggests that actual instances of this
problematic example would be rare in practice. In the rare event that the need arose, a simple
workaround exists: to pack the polymorphic type in a newtype using RankNTypes.

3 Intensional Monads
The introduction of intensional functions prompts us to consider the myriad ways in which
extensional functions are used and to investigate their intensional analogues. Herein, we briefly
discuss one such example: intensional monads, a reconstruction of Haskell’s encoding of monads
with intensional Kleisli functions.3 While the signature of a traditional monad bind operator is
bind :: m a -> (a -> m b) -> m b, the intensional form is itsBind :: m a ->%c (a ->%c m b) ->%c m b

for a particular constraint function c.
Note that the closure of the bound intensional function a ->%c m b must conform to c, so the

itsBind implementation may make use of this guarantee. As an example, we consider early pruning
within an idempotent search: a search in which we are concerned only with results and not how we
arrived at them. Consider a Search monad equipped with some related Index type constructor and
two operations: lookup, which produces each entry in an Index for a given key, and insert, which
adds an entry to an Index. Let us assume the following type signatures:

1 lookup :: (Ord (Index k v), Ord k, Ord v) => Index k v -> k -> Search v
2 insert :: (Ord (Index k v), Ord k, Ord v) => Index k v -> k -> v -> Search ()

Crucially, we expect each an operation bound to a lookup (that is, the f in each itsBind (lookup i k) f)
to run for each associated value in the Index, even those which are added in the future.

We briefly describe how such a Search monad might work. The monad can deduplicate redundant
calls to insert by encapsulating a dictionary data structure to hold indexed values. As new indices
are added to this dictionary, the monad is obligated to pass them to previous lookup operations
as mentioned above. To do this, the monad “catches up” by re-evaluating previous computations
dependent upon that index by passing them the new index value. To track these computations,
the monad must store each continuation (the f in itsBind (lookup i k) f). In an extensional monad,
these continuations f are extensional and so cannot be examined or readily deduplicated.
An intensional Search monad resolves this issue: the continuations passed to itsBind are inten-

sional functions and, if subject to the Ord constraint, can be compared and deduplicated like any
first-order value. For instance, consider the program fragment appearing in Figure 9a and its

3A more thorough examination of intensional monads appears in Appendix A.
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desugared counterpart in Figure 9b.4 On line 5 of each, the remainder of the algorithm runs for
each z value associated with the key (x,y) in the index GrammarCombining.
While deduplicating z is straightforward in any implementation, an intensional Search permits

us to deduplicate the continuation \%Ord z -> ... based upon the values of i and k it has captured
in closure: two continuations with the same i and k are equal according to the approximation of
Section 2.3. The value of j, which is no longer relevant at this point, is naturally excluded from this
deduplication process because it is not captured in the continuation’s closure. Observe that the
continuations (i.e., the second arguments) passed to itsBind tend themselves to capture itsBind in
closure; as a result, it is critical that itsBind, and so the monad itself, is intensional.

The next two sections provide a formal treatment of intensional functions in support of this and
other use cases.

4 Lazy Substitution
This section introduces 𝜆𝜃 , a small lambda calculus which uses lazy substitution. This prepares
us to introduce in Section 5 the intensional functions lambda calculus, 𝜆ITS, which also uses lazy
substitution. A lambda calculus using lazy substitution is equivalent to a lambda calculus using
traditional substitution, but lazy substitution considerably simplifies some 𝜆ITS-related proofs.
We discuss in Section 7 some work related to lazy substitution (such as explicit substitution

[Abadi et al. 1990]). This section defines 𝜆𝜃 to introduce lazy substitution separately from the details
of intensional functions. Key to lazy substitution is that, while substitutions are manifest as a part
of the grammar, they are not a form of expression.

4.1 Defining 𝜆𝜃
We define the syntax of 𝜆𝜃 in Figure 10. 𝜆𝜃 is a call-by-name lambda calculus in which substitutions
𝜃 – sequences of mappings from variables to expressions – appear as components of the grammar.
By representing these typical capture-avoiding substitution operations explicitly, we are able to
simplify proofs of properties about the effects of substitutions on evaluation.

𝑒 ::= 𝑥 | 𝜆𝜃𝑥 . 𝑒 | 𝑒 𝑒 expressions
𝜃 ::= [𝑥 ↦→ 𝑒, . . .] substitutions

Fig. 10. 𝜆𝜃 Syntax

To discuss the syntax in this figure, we require some basic notation:
Definition 4.1. We write fv(𝑒) to denote the free variables of 𝑒 and dom(𝜃 ) for {𝑥 | 𝑥 ↦→ 𝑒 ∈ 𝜃 }.

Substitutions are formally defined as a list of mappings from variable to expression. We define the
substitution operation in Figure 11, overloading mathematical function notation. This is a typical
capture-avoiding substitution definition except that (1) it performs each of a list of substitutions and
(2) substitutions stop at lambda abstractions. Upon reaching a lambda abstraction, the substitution
to be performed is stored in the 𝜃 position of the lambda rather than being applied directly to the
body. This is the sense in which substitution is “lazy”: we will not perform substitution until it is
required to continue reduction.

We define the call-by-name operational semantics for 𝜆𝜃 in Definition 4.2. The Appl rule performs
on the function’s body any substitutions which were previously deferred (in addition to the
substitution of the parameter). These rules do not allow evaluation under binders; we make this
choice to simplify our statements below.

4Some readers may recognize this as a rule from CKY chart parsing [Cocke 1969; Kasami 1965; Sakai 1961; Younger 1967].
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[] (𝑒′) = 𝑒′

( [𝑥 ↦→ 𝑒] ∥ 𝜃 ) (𝑥) = 𝜃 (𝑒)
( [𝑥 ↦→ 𝑒] ∥ 𝜃 ) (𝑥 ′) = 𝜃 (𝑥 ′) , 𝑥 ≠ 𝑥 ′

( [𝑥 ↦→ 𝑒] ∥ 𝜃 ) (𝜆𝜃 ′𝑥 . 𝑒′) = 𝜃 (𝜆𝜃 ′𝑥 . 𝑒′)
( [𝑥 ↦→ 𝑒] ∥ 𝜃 ) (𝜆𝜃 ′𝑥 ′ . 𝑒′) = 𝜃 (𝜆 (𝜃 ′ ∥ [𝑥 ↦→𝑒 ] )𝑥

′ . 𝑒′) , 𝑥 ≠ 𝑥 ′, 𝑥 ′ ∉ fv(𝑒)
𝜃 (𝑒1 𝑒2) = 𝜃 (𝑒1) 𝜃 (𝑒2)

Fig. 11. 𝜆𝜃 Substitution

Red-Left
𝑒1 −→ 𝑒′1

𝑒1 𝑒2 −→ 𝑒′1 𝑒2
Appl

𝑒′ = (𝜃 ∥ [𝑥 ↦→ 𝑒2]) (𝑒1)
(𝜆𝜃𝑥 . 𝑒1) 𝑒2 −→ 𝑒′

Fig. 12. 𝜆𝜃 Operational Semantics

Definition 4.2. Let 𝑒 −→ 𝑒′ be the least relation satisfying the rules in Figure 12 as well as
traditional 𝛼-renaming. Let 𝑒 −→∗ 𝑒′ be the transitive closure of this relation.

In the next section, we discuss some formal properties of 𝜆𝜃 . We will use these same properties
in the larger setting of the 𝜆ITS system defined in Section 5, but the relative simplicity of 𝜆𝜃
correspondingly simplifies the initial presentation of these properties.

4.2 Formal Properties of 𝜆𝜃
We note that a bisimulation exists which relates an expression’s evaluation in 𝜆𝜃 to its evaluation in a
traditional call-by-name lambda calculus: at each step, suspended substitutions in the 𝜆𝜃 expression
can be eagerly performed to produce the traditional expression. (We elide formal definitions and
proof for brevity.) We also observe that the set of unique function bodies in 𝜆𝜃 expressions is
nonincreasing as evaluation proceeds. Formally:
Lemma 4.3. Suppose 𝑒1 −→ 𝑒2. Let 𝐸𝑘 = {𝑒 | (𝜆𝜃𝑥 . 𝑒) appears in 𝑒𝑘 } for 𝑘 ∈ {1, 2}. Then 𝐸1 ⊇ 𝐸2.

Proof. By induction first on the height of 𝑒1 −→ 𝑒2 and then on the height of the substitution
applied in the Appl rule. In summary: substitution does not modify the bodies of functions and the
Appl rule removes the applied function’s (substituted) body from its surrounding function. □

Note that Lemma 4.3 relies upon the fact that 𝜆𝜃 does not permit evaluation under lambdas. Any
such evaluation would modify the body of a function and thus break this property.

While Lemma 4.3 demonstrates that function bodies are nonincreasing as evaluation proceeds, this
is not true of functions themselves. As an expression evaluates, new 𝜆𝜃𝑥 . 𝑒 subexpressions appear
with variations in the 𝜃 position. Intuitively, 𝜃 is an environment: its substitutions correspond to
bindings for the function body’s non-local variables. This illustrates our interest in the 𝜆𝜃 -calculus:
functions are explicitly defined in terms of their original definition in the source program and
the values captured in their closure. Lemma 4.3 is a common invariant of functional compilation
systems: new environments appear at runtime but new code does not.

Our overall goal is to show the (conservative) equality of functions with the same environment.
Substitutions act as environments but require a notion of equivalence. For instance, the substitutions
[𝑥1 ↦→ (𝜆[ ]𝑥0 . 𝑥0)] and [𝑥1 ↦→ 𝑥2, 𝑥2 ↦→ (𝜆[ ]𝑥0. 𝑥0)] are grammatically distinct entities but will,
when applied, always have the same results. Intuitively, two substitutions are equivalent if, for all
input expressions, they produce substitution-equivalent expressions; substitution equivalence on
expressions is a homomorphic extension of this definition. Formally:
Definition 4.4.We mutually define relations of the forms 𝜃 ≃ 𝜃 and 𝑒 ≃ 𝑒 as the least relations
conforming to the following:
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𝜃1 ≃ 𝜃2 if ∀𝑒. 𝜃1 (𝑒) ≃ 𝜃2 (𝑒) 𝑥 ≃ 𝑥

𝑒1 𝑒2 ≃ 𝑒′1 𝑒
′
2 if 𝑒1 ≃ 𝑒′1 and 𝑒2 ≃ 𝑒′2 𝜆𝜃1𝑥 . 𝑒1 ≃ 𝜆𝜃2𝑥 . 𝑒2 if 𝜃1 ≃ 𝜃2 and 𝑒1 ≃ 𝑒2

Substitution equivalence allows us to make observations about substitutions in 𝜆𝜃 . For instance,
substitutions only affect the free variables in the expressions to which they are applied. (This is
intuitive from inspection of Definition 11 but is crucial in our later proof and so deserves formal
treatment.) Let us denote sets of variables as 𝑋 . Then, in keeping with our view of substitutions as
functions on expressions, let us define a restriction of substitutions to a specific set of variables.

Definition 4.5.

[] |𝑋 = []
( [𝑥 ↦→ 𝑒] ∥ 𝜃 ) |𝑋 = 𝜃 |𝑋 , 𝑥 ∉ 𝑋

( [𝑥 ↦→ 𝑒] ∥ 𝜃 ) |𝑋 = [𝑥 ↦→ 𝑒] ∥(𝜃 |𝑋∪fv(𝑒 ) ) , 𝑥 ∈ 𝑋
Definition 4.5 filters a substitution by discarding mappings for variables not in the set of approved

variables. We must be careful to preserve substitutions for variables which will be introduced by
other substitutions. Using this notation, we can formally state the above claim:
Lemma 4.6. For any substitution 𝜃 and any expression 𝑒 , 𝜃 (𝑒) ≃ 𝜃 |fv(𝑒 ) (𝑒).

Proof. By induction on the length of 𝜃 , then the height of 𝑒 , then case analysis of Definition 11.
□

We also observe that substitutions which produce equivalent results on a particular expression
will produce equivalent results on all expressions with the same free variables. Formally:
Lemma 4.7. If 𝜃1 (𝑒) ≃ 𝜃2 (𝑒) then (𝜃1 |fv(𝑒 ) ) ≃ (𝜃2 |fv(𝑒 ) ).

Proof. By induction on the height of 𝑒 and by using Figure 11 and 𝜃1 (𝑒) to infer the substitutions
performed by 𝜃1. In summary: we view 𝑒 as a template structure holding free variables. Substitution
is homomorphic except on variables (which are immediately replaced) and functions (which store
the substitution directly in their 𝜃 position). This does not allow us to infer the exact 𝜃1 or 𝜃2 —
different substitutions may yield the same results on the free variables of 𝑒 — but we learn enough
to determine how the substitutions behave on those free variables. □

In the following sections, we will define and prove formal properties about the larger 𝜆ITS
system which includes intensional functions. While the grammar of 𝜆ITS is much larger, these same
arguments regarding 𝜆𝜃 still apply to 𝜆ITS.

5 Formalization of Intensional Functions
This section defines 𝜆ITS, a lambda calculus equipped with intensional functions and the features
to make them meaningful, and examines the formal properties of that system. Most importantly,
we prove the correctness of the intuitive conservative function equality model we presented in
Section 2.3. We also give a type system in Section 5.4 which is proven correct in Appendix B.
Section 5.5 illustrates an example of a small 𝜆ITS program.

5.1 𝜆ITS Features
The grammar of 𝜆ITS appears in Figure 13. We now briefly motivate each of its features.
𝜆ITS includes constraint functions 𝐹 which name single-variable polymorphic types. We use con-

straint functions to represent properties we wish to define on intensional functions; for instance, the
type bool

Eq−−→ bool denotes intensional functions (from booleans to booleans) which are equatable.
Constraint functions are defined using the class keyword as they correspond to a weak form of
typeclass. A reader may safely think of these constraint functions as single-method typeclasses
which conflate the name of the method with the name of the class. For instance, a 𝜆ITS program
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𝑥 variables
ℓ program points
𝐹 constraint functions
𝜙 ::= ⟨𝐹, 𝑒, 𝜏⟩ closure items
𝑞 ::= 𝐹 𝜏 constraints
𝑄 ::= {𝑞, . . .} constraint sets

𝐶 ::= {𝐹 ↦→ 𝜎, . . .} constraint names
𝑊 ::= {𝑞 ↦→ 𝑒, . . .} constraint witnesses
Γ ::= {𝑥 ↦→ 𝜎, . . . , } type environments
𝜓 ::= 𝑥 ↦→ 𝑒 | 𝛼 ↦→ 𝜏 substitutions
𝜃 ::= [𝜓, . . .] substitution sequences

𝑣 ::= 𝑥 | ℓ | 𝐹 | 𝜙 | 𝑒 :: 𝑒 | nil𝜏 | true | false |
tyrep 𝜏 | 𝜆𝐹

ℓ,𝑒,𝜃
𝑥:𝜏.𝑒 | Λ𝛼.𝑄 ⇒ 𝑒

values

𝑒 ::= 𝑣 | 𝑒 𝑒 | 𝑒 𝜏 | identify 𝑒 | inspect 𝑒 |
pack 𝑒 as 𝑞 | unpack 𝑥 : ∃𝛼 as 𝑥 = 𝑒 in 𝑒 |
let 𝑥:𝜎 = 𝑒 in 𝑒 | 𝑒 ~ 𝑒 ? 𝑒 : 𝑒 | 𝑒 == 𝑒 |
hd 𝑒 | tl 𝑒 | nil? 𝑒 | if 𝑒 then 𝑒 else 𝑒

expressions

𝑐 ::= class 𝐹 : ∀𝛼. 𝜏; class declarations
𝑑 ::= instance 𝑞 = 𝑒; instance declarations

𝑝 ::= 𝑐 𝑑 𝑒 programs

𝜏 ::= 𝛼 | 𝜏 𝐹−→𝜏 | [𝜏] | bool | ppt |
clo 𝐹 | tyrep 𝜏

monotypes

𝜎 ::= ∀𝛼.𝑄 ⇒ 𝜎 | 𝜏 polytypes

Fig. 13. 𝜆ITS Grammar

might include class Eq : ∀a. a Eq−−→ a
Eq−−→ bool to designate the type of equality functions. (Equality

functions themselves are equatable in this definition. We discuss this further in Section 5.5.)
Constraints are satisfied by ad-hoc instantiations. Constraints 𝑞 are syntactic pairs of a constraint

function and a monotype to satisfy it. Constraint functions appear as terms in the expression
grammar to be used via explicit type application to identify a particular instantiation. For in-
stance, a previously-defined equality on booleans may be named as Eq bool; the expression
(Eq bool) true false would evaluate to false. In general, constraint functions themselves will
be single-variable polymorphic functions with empty type constraint sets.
Intensional functions themselves are written 𝜆𝐹

ℓ,𝑒′,𝜃𝑥:𝜏.𝑒 . The three rightmost positions in this
form — 𝑥 , 𝜏 , and 𝑒 — are a parameter, its type, and the function body as in a typical typed lambda
calculus. 𝐹 is the constraint function to which the intensional function conforms. The ℓ in the first
lower position corresponds to a unique program point at which the function was originally defined;
𝑒′ is a closure expression which will, in practice, be a list of type-tagged closure items 𝜙 . The 𝜃
position corresponds to the substitutions described in the 𝜆𝜃 -calculus in Section 4.
Although 𝜆ITS is much more complex than 𝜆𝜃 , substitutions operate in the same fashion. For

brevity, we omit much of the definition of capture-avoiding substitution for 𝜆ITS, but we give the
clauses pertaining to intensional functions (including type substitution) for clarity.
Definition 5.1. We use 𝜃 (𝑒) to denote the lazy capture-avoiding substitution of 𝜃 in the expression
𝑒; we use similar notation for other grammar terms such as 𝑝 and 𝜏 .

( [𝑥 ′ ↦→ 𝑒′] ∥ 𝜃 ) (𝜆𝐹
ℓ,𝑒′′,𝜃 ′𝑥:𝜏.𝑒) = 𝜃 (𝜆𝐹ℓ,𝑒′′,𝜃 ′𝑥:𝜏.𝑒) , 𝑥 = 𝑥 ′

( [𝑥 ′ ↦→ 𝑒′] ∥ 𝜃 ) (𝜆𝐹
ℓ,𝑒′′,𝜃 ′𝑥:𝜏.𝑒) = 𝜃 (𝜆𝐹ℓ,𝑒′′,(𝜃 ′ ∥ [𝑥 ′ ↦→𝑒′ ] )𝑥:𝜏.𝑒) , 𝑥 ≠ 𝑥 ′, 𝑥 ∉ fv(𝑒′)

( [𝛼 ′ ↦→ 𝜏 ′] ∥ 𝜃 ) (𝜆𝐹
ℓ,𝑒′′,𝜃 ′𝑥:𝜏.𝑒) = 𝜃 (𝜆𝐹ℓ,𝑒′′,(𝜃 ′ ∥ [𝛼 ′ ↦→𝜏 ′ ] )𝑥:𝜏.𝑒)

...

Let us consider an example intensional function expression. To ease the presentation of such
examples throughout this section, we will use the simple syntactic sugar presented in Figure 14.
The function

(
𝜆
Eq
1,[],[ ]a:bool.𝜆

Eq
2,[pack a as Eq bool],[ ]b:bool.a and b

)
is a two-argument function

performing the logical conjunction of its arguments. We denote program points as integers 1 and
2 to distinguish them from other terms. The first function’s closure is [] as that function’s body
has no non-local variables. The second function’s closure contains a single element, a type-tagged
packing of a, because a is non-local and free in that function’s body. The Eq bool appearing in that
pack expression is an annotation for the type system signifying that an instance of Eq must exist
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for bool, the type of a. Both functions have [] in their substitution position as neither has yet been
subjected to any substitutions during evaluation.

𝑒1 and 𝑒2 ≡ if 𝑒1 then 𝑒2 else false
𝑒1 or 𝑒2 ≡ if 𝑒1 then true else 𝑒2
[𝑒1,. . .,𝑒𝑛] ≡ 𝑒1::. . .::𝑒𝑛::nil

Fig. 14. 𝜆ITS Syntactic Sugar

We have specific expectations of the 𝜆ITS pro-
grams we will consider: program points should
be unique at the start of evaluation, closures
should capture all (and only) non-local vari-
ables of their corresponding functions, and sub-
stitutions should be initially empty and accumulate lazy substitution operations over time. However,
these expectations cannot be enforced by syntax any more than whether expressions are closed.
Section 5.3 will formally define invariants to identify which programs conform to these expectations
and are therefore included in our study. In practice, these invariants are enforced by an encoding
system (such as Haskell+ItsFn) which translates from a higher-level language that does not require
the programmer to articulate program points, closures, or substitutions.

As we continue to examine the syntax of 𝜆ITS, recall from Section 2.4: even if we know that two
intensional functions’ closures are comprised of equatable elements, we must further know that
they are equatable to each other. 𝜆ITS supports runtime type comparisons using a special form of
conditional expression written 𝑒1 ~ 𝑒2 ? 𝑒3 : 𝑒4. Here, 𝑒1 and 𝑒2 must be runtime type witnesses of
the form tyrep 𝜏 . This expression reduces to 𝑒3 if they are equal and 𝑒4 if they are not. We briefly
discuss the typing of this expression using standard techniques in Section 5.4.
The grammar of 𝜆ITS also supports bounded polymorphism via explicit type application. While

polymorphism isn’t strictly necessary in 𝜆ITS, we include it to demonstrate its compatibility with
intensional functions. Polymorphism is bounded via qualified constraints. [Jones 1992]

5.2 Operational Semantics
We now formalize 𝜆ITS beginning with the operational semantics of expressions. As 𝜆ITS has several
expression forms, we abbreviate our definition using evaluation contexts [Felleisen and Hieb 1992]
to identify points of reduction. Evaluation contexts are similar to the expression grammar and
contain a single “hole”, denoted •, to indicate the point at which reduction can occur. As our
operational semantics are call-by-name, the evaluation contexts defined in Figure 15 are sufficient.
We write 𝜉 (𝑒) to denote the expression produced by substituting 𝑒 for the hole appearing in 𝜉 .

𝜉 ::= • | 𝜉 𝑒 | 𝜉 𝜏 | identify 𝜉 | inspect 𝜉 | unpack 𝑥 : ∃𝛼 as 𝑥 = 𝜉 in 𝑒 evaluation contexts
| 𝜉 ~ 𝑒 ? 𝑒 : 𝑒 | 𝑣 ~ 𝜉 ? 𝑒 : 𝑒 | 𝜉 == 𝑒 | 𝑣 == 𝜉 | hd 𝜉 | tl 𝜉 | nil? 𝜉 | if 𝜉 then 𝑒 else 𝑒

Fig. 15. 𝜆ITS Evaluation Contexts

Our operational semantics relation is defined in terms of a witness environment𝑊 which maps
each constraint (e.g. Eq bool) to its corresponding definition. We use𝑊 [𝑞] to denote the lookup
of a constraint’s expression in this environment. We now define the operational semantics of 𝜆ITS:
Definition 5.2. We define𝑊 ⊢ 𝑒 −→ 𝑒 to be the least relation satisfying the rules in Figure 16.

Application of intensional functions is identical to that of extensional functions in 𝜆𝜃 (which is, as
previously mentioned, bisimilar to a traditional call-by-name lambda calculus). Lazy substitution is
performed at application and when the closure of a function is obtained via the inspect primitive;
the identify primitive simply retrieves the corresponding program point. 𝜆ITS includes primitives
for conditions, lists, and comparing program points for equality.

The E-Witness rule deserves some brief attention. Although the rest of the operational semantics
is substitution-based, the invocation of constraint implementations is environment-based. This is
due to polymorphism: while variable bindings are immediate from lexical analysis, the connection
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E-Red
𝑊 ⊢ 𝑒 −→ 𝑒′

𝑊 ⊢ 𝜉 (𝑒) −→ 𝜉 (𝑒′)
E-App

𝑊 ⊢ (𝜆𝐹
ℓ,𝑒′,𝜃𝑥:𝜏.𝑒1) 𝑒2 −→ (𝜃 ∥ [𝑥 ↦→ 𝑒2]) (𝑒1)

E-TApp
𝑊 ⊢ (Λ𝛼.𝑄 ⇒ 𝑒) 𝜏 −→ [𝛼 ↦→ 𝜏] (𝑒)

E-Witness
𝑊 ⊢ 𝐹 𝜏 −→𝑊 [𝐹 𝜏]

E-Identify
𝑊 ⊢ identify (𝜆𝐹

ℓ,𝑒′,𝜃𝑥:𝜏.𝑒) −→ ℓ
E-Inspect

𝑊 ⊢ inspect (𝜆𝐹
ℓ,𝑒′,𝜃𝑥:𝜏.𝑒) −→ 𝜃 (𝑒′)

E-Pack
𝑊 ⊢ pack 𝑒 as 𝐹 𝜏 −→ ⟨𝐹, 𝑒, 𝜏⟩

E-Unpack
𝑊 ⊢ unpack 𝑥1 : ∃𝛼 as 𝑥2 = ⟨𝐹, 𝑒, 𝜏⟩ in 𝑒′ −→ [𝑥1 ↦→ 𝑒, 𝑥2 ↦→ tyrep 𝜏, 𝛼 ↦→ 𝜏] (𝑒′)

E-Let
𝑊 ⊢ let 𝑥:𝜎 = 𝑒 in 𝑒′ −→ [𝑥 ↦→ 𝑒] (𝑒′)

E-Like
𝑊 ⊢ (tyrep 𝜏 ~ tyrep 𝜏 ? 𝑒1 : 𝑒2) −→ 𝑒1

E-Unlike
𝜏1 ≠ 𝜏2

𝑊 ⊢ (tyrep 𝜏1 ~ tyrep 𝜏2 ? 𝑒1 : 𝑒2) −→ 𝑒2

(omitted for brevity: rules for ==, ::, nil?, and if)

Fig. 16. 𝜆ITS Operational Semantics: Expression Evaluation Rules

P-Step
𝑊 =

{
𝑞 ↦→ 𝑒

��� (instance 𝑞 = 𝑒;) ∈ 𝑑} 𝑊 ⊢ 𝑒 −→ 𝑒′

𝑐 𝑑 𝑒 −→ 𝑐 𝑑 𝑒′

Fig. 17. 𝜆ITS Operational Semantics: Program Evaluation

between a constraint definition and its usage may not be apparent until after a type application.
There are no occurrences of “Eq bool” in the expression “(Λ𝛼. ∅ ⇒ Eq 𝛼) bool”, for instance, but
application of the E-TApp rule reveals a use of the Eq bool constraint. For this reason, we must
maintain an environment𝑊 of constraints to be consulted once type application is resolved.
We evaluate 𝜆ITS programs simply by packing their witnesses into a static𝑊 dictionary and

stepping the body expression. We define all constraints at top level to simplify the use of𝑊 : because
it is global, one static𝑊 can be used throughout evaluation. Formally:
Definition 5.3.We define 𝑝 −→ 𝑝′ to be the least relation satisfying the rule in Figure 17. We
define 𝑝 −→∗ 𝑝′ to hold iff either 𝑝 = 𝑝′ or 𝑝 −→ . . . −→ 𝑝′.

5.3 Closure Consistency
We now prove correct the conservative comparison of intensional functions described in Section 2.3.
That model equates functions which have the same program point and environment. We will
show that, for well-formed 𝜆ITS programs, the program point and environment of each intensional
function decide the rest of that function. While this proof is limited to conservative equality,
arguments of similar structure can be used to support other operations (e.g. function comparison
or hashing).
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We begin by establishing some preliminaries:
Definition 5.4. We define fv(𝑒) to be the set of free variables 𝑥 appearing in 𝑒 . We define ftv(𝜏)
to be the set of free type variables 𝛼 appearing in 𝜏 . We extend ftv to operate homomorphically on
constraint sets 𝑄 , environments Γ, expressions 𝑒 , and polytypes 𝜎 . Let Canon be a function from
sets of variables and type variables to a list of those variables in some canonical order.

We then establish a canonical closure representation for 𝜆ITS functions.
Definition 5.5. For a parameter𝑥0, a body expression 𝑒 , and a constraint function 𝐹 , let [𝑥1, . . . , 𝑥𝑛] =
Canon(fv(𝑒)\{𝑥0}) and let [𝛼1, . . . , 𝛼𝑚] = Canon(ftv(𝑒)). An expression 𝑒′ is a canonical closure
of 𝑥0, 𝑒 , and 𝐹 iff 𝑒′ = [pack 𝑥1 as 𝐹 𝜏1, . . ., pack 𝑥𝑛 as 𝐹 𝜏𝑛, pack (tyrep 𝛼1) as 𝐹 (tyrep 𝛼1),
. . ., pack (tyrep 𝛼𝑚) as 𝐹 (tyrep 𝛼𝑚)] for some 𝜏1, . . . , 𝜏𝑛 .
Note that Definition 5.5 describes a canonical closure, not the canonical closure, of the defining

lexical components of a function. This is because the monotypes 𝜏1, . . . , 𝜏𝑛 are not lexically fixed by
these lexical components. We discuss typechecking of 𝜆ITS in Section 5.4 and, when typechecking,
only one selection of these monotypes will produce a canonical typing of the program. For the
purposes of the proofs in this section, however, we need not constrain these monotypes.

We now define closure consistency, the property we aim to show of well-formed programs which
will support our conservative approximation of function equality.
Definition 5.6. An expression 𝑒 is closure consistent iff the following are true:
(1) For every function 𝜆𝐹

ℓ,𝑒1,𝜃
𝑥:𝜏.𝑒2 appearing in 𝑒 ,

(a) 𝑒1 is a canonical closure of 𝑥 , 𝑒2, and 𝐹 .
(b) 𝑥 ∉ dom(𝜃 ).

(2) For every pair of functions 𝜆𝐹1
ℓ,𝑒′1,𝜃1

𝑥1:𝜏1.𝑒
′′
1 and 𝜆𝐹2

ℓ,𝑒′2,𝜃2
𝑥2:𝜏2.𝑒

′′
2 (note same ℓ!) in 𝑒 ,

(a) 𝐹1 = 𝐹2, 𝑒′1 = 𝑒
′
2, 𝑥1 = 𝑥2, 𝜏1 = 𝜏2, and 𝑒

′′
1 = 𝑒′′2 . (That is: any two functions with the same

program point differ only by substitutions.)
(b) 𝜃1 (𝑒′1) ≃ 𝜃2 (𝑒′2) implies 𝜃1 (𝑒′′1 ) ≃ 𝜃2 (𝑒′′2 ). (That is: any two functions with the same

program point and equivalent substitutions will produce equivalent bodies after applying
their substitutions.)

We extend the definition of closure consistency homomorphically to programs 𝑝 and constraint
witnesses𝑊 .

Closure consistency allows us to reason about functions in terms of their program points and
environments rather than substitutions on their bodies. By including lazy substitution, we can
reason instead about program points and substitutions. As a consequence, we can use properties
similar to those shown in Section 4.2 to validate our conservative equality model.

We thus aim to preserve closure consistency throughout evaluation. However, many 𝜆ITS programs
are not closure consistent. For example, the program “[𝜆Eq1,[],[ ]a:bool.true,𝜆

Eq
1,[],[ ]a:bool.false]”

contains two functions with the same program points and environments but different bodies.
We proceed by defining a set of initial programs which meet this closure consistency property

and then showing preservation of closure consistency among those programs during evaluation. As
mentioned above, we expect programmers to write in a higher-level language (e.g. Haskell+ItsFn)
which only requires (and only permits) the programmer to specify 𝐹 . The encoding should then
establish functions’ program points and environments. We define initial programs as follows:
Definition 5.7. A program 𝑝 is initial iff the following are true:
(1) For every function 𝜆𝐹

ℓ,𝑒1,𝜃
𝑥:𝜏.𝑒2 appearing in 𝑝 , 𝑒1 is a canonical closure of 𝑥 , 𝑒2, and 𝐹 .

(2) For every function 𝜆𝐹
ℓ,𝑒1,𝜃

𝑥:𝜏.𝑒2 appearing in 𝑝 , 𝜃 = [].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 274. Publication date: October 2024.



Intensional Functions 274:15

(3) For every pair of functions 𝜆𝐹1
ℓ1,𝑒′,𝜃1

𝑥1:𝜏1.𝑒
′′
1 and 𝜆𝐹2

ℓ2,𝑒′,𝜃2
𝑥2:𝜏2.𝑒

′′
2 appearing in 𝑝 , we have

ℓ1 ≠ ℓ2. (That is: no two functions have the same program point.)
To establish a starting point, we show that these programs are closure consistent:

Lemma 5.8. Any initial program 𝑝 is closure consistent.

Proof. By clauses 1 and 2 of Definition 5.7, all functions in 𝑝 have canonical closure expressions
and empty substitutions; this satisfies clauses 1a and 1b of Definition 5.6. By clause 3 of Definition 5.7,
all functions in 𝑝 have distinct program points; this satisfies clauses 2a and 2b of Definition 5.6. □

Lemma 5.8 is our base case for proving that initial programs are closure consistent throughout
evaluation. We next prove that closure consistency is preserved as evaluation proceeds, writing
one lemma for each clause of Definition 5.6. First, we show that canonical closures are preserved.
Lemma 5.9. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then, for every function 𝜆𝐹

ℓ,𝑒1,𝜃
𝑥:𝜏.𝑒2 appearing

in 𝑝′, 𝑒1 = 𝜃 (𝑒3) where 𝑒3 is a canonical closure of 𝑥 , 𝑒2, and 𝐹 .

Proof. For any function appearing in 𝑝′, it either appears in 𝑝 or it does not. In the former case,
our goal is immediately satisfied by Definition 5.6 and because 𝑝 is closure consistent.
In the latter case, we observe by inspection of the rules in Figures 16 and 17 that any function

appearing in 𝑝′ which does not appear in 𝑝 is the result of substitution of a function appearing
in 𝑝 . By this observation and Definition 5.1, some function 𝜆𝐹

ℓ,𝑒′1,𝜃
′𝑥:𝜏.𝑒2 appears in 𝑝 such that

𝑒1 = 𝜃
′′ (𝑒′1) and 𝜃 = 𝜃 ′ ∥ 𝜃 ′′. (Note that 𝜃 ′′ is not necessarily the same as a substitution appearing

in an operational semantics rule because 𝜃 ′′, by Definition 5.1, excludes all substitutions of 𝑥 .)
Because 𝑝 is closure consistent, we have that 𝑒′1 = 𝜃

′ (𝑒3) for some 𝑒3 which is a canonical closure
of 𝑥 , 𝑒2, and 𝐹 . We have 𝑒1 = 𝜃 ′′ (𝑒′1), so 𝑒1 = 𝜃 ′′ (𝜃 ′ (𝑒3)). By Definition 5.1 and because 𝜃 = 𝜃 ′ ∥ 𝜃 ′′,
we have 𝑒1 = 𝜃 (𝑒3), so we are finished. □

We next show the preservation of the second clause of Definition 5.6: functions’ parameters do
not appear in the domains of functions’ substitutions. We use a similar strategy to the previous
lemma, using the fact that new functions appear as substitutions of previously-existing functions.
Lemma 5.10. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then, for every function 𝜆𝐹

ℓ,𝑒1,𝜃
𝑥:𝜏.𝑒2 appearing

in 𝑝′, 𝑥 ∉ dom(𝜃 ).

Proof. For any function appearing in 𝑝′, it either appears in 𝑝 or it does not. In the former case,
our goal is immediately satisfied by Definition 5.6 and because 𝑝 is closure consistent.
In the latter case, consider a function 𝜆𝐹

ℓ,𝑒′1,𝜃
′𝑥:𝜏.𝑒2 appearing in 𝑝′ but not appearing in 𝑝 .

By inspection of the rules in Figures 16 and 17, this function is the result of substitution of a
function appearing in 𝑝 . Because 𝑝 is closure consistent, the function upon which that substitution
is performed does not contain 𝑥 in the domain of its substitution. By Definition 5.1, 𝑥 is not
introduced to the domain of the substitution. Thus, 𝑥 ∉ dom(𝜃 ). □

The next clauses of Definition 5.6 involve pairs of functions, so we extend the previous strategy
accordingly. The cases in which either or both functions are new conveniently generalize.
Lemma 5.11. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then, for every pair of functions 𝜆𝐹1

ℓ,𝑒′1,𝜃1
𝑥1:𝜏1.𝑒

′′
1

and 𝜆𝐹2
ℓ,𝑒′2,𝜃2

𝑥2:𝜏2.𝑒
′′
2 appearing in 𝑝′, we have 𝐹1 = 𝐹2, 𝑥1 = 𝑥2, 𝜏1 = 𝜏2, and 𝑒′′1 = 𝑒′′2 .

Proof. For any function appearing in 𝑝′, it either appears in 𝑝 or it does not. We thus have three
cases: either both functions appear in 𝑝 , only one function appears in 𝑝 , or neither function appears
in 𝑝 . In the first case, we are immediately finished because 𝑝 is closure consistent. By inspection of
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the rules in Figures 16 and 17, any function appearing in 𝑝′ which does not appear in 𝑝 is the result
of substitution of a function appearing in 𝑝 .

Consider the case in which neither function appears in 𝑝 . By the above observation, there exists
some function 𝜆𝐹3

ℓ3,𝑒
′
3,𝜃3
𝑥3:𝜏3.𝑒

′′
3 which appears in 𝑝 such that 𝜃 ′′3 (𝜆

𝐹3
ℓ3,𝑒

′
3,𝜃3
𝑥3:𝜏3.𝑒

′′
3 ) = 𝜆

𝐹1
ℓ,𝑒′1,𝜃1

𝑥1:𝜏1.𝑒
′′
1

for some substitutions 𝜃 ′′3 . Similarly, there exists some function 𝜆𝐹4
ℓ4,𝑒

′
4,𝜃4
𝑥4:𝜏4.𝑒

′′
4 which appears in

𝑝 such that 𝜃 ′′4 (𝜆
𝐹4
ℓ4,𝑒

′
4,𝜃4
𝑥4:𝜏4.𝑒

′′
4 ) = 𝜆

𝐹2
ℓ,𝑒′2,𝜃2

𝑥2:𝜏2.𝑒
′′
2 for some substitutions 𝜃 ′′4 . By Definition 5.1, we

have 𝐹1 = 𝐹3, 𝑒′1 = 𝑒′3, 𝑥1 = 𝑥3, 𝜏1 = 𝜏3, 𝑒′′1 = 𝑒′′3 , and ℓ = ℓ3. Similarly, we have 𝐹2 = 𝐹4, 𝑒′2 = 𝑒′4,
𝑥2 = 𝑥4, 𝜏2 = 𝜏4, 𝑒′′2 = 𝑒′′4 , and ℓ = ℓ4. Since ℓ3 = ℓ = ℓ4 and 𝑝 is closure consistent, we have 𝐹3 = 𝐹4,
𝑥3 = 𝑥4, 𝜏3 = 𝜏4, and 𝑒′′3 = 𝑒′′4 . By transitivity we have 𝐹1 = 𝐹2, 𝑒′1 = 𝑒

′
2, 𝑥1 = 𝑥2, 𝜏1 = 𝜏2, and 𝑒

′′
1 = 𝑒′′2 .

The remaining case, in which one function appears in 𝑝 but the other does not, proceeds similarly.
The only difference in this case is that, effectively and without loss of generality, 𝜃 ′′4 = []. □

The remaining clause of Definition 5.6 is the most interesting as it demonstrates the relationship
between the (substituted) closure environment and the (substituted) body of any function in a 𝜆ITS
program. This lemma makes thorough use of closure consistency as well as previous lemmas, but
we use much the same strategy in the previous lemma to merge cases.
Lemma 5.12. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then, for every pair of functions 𝜆𝐹1

ℓ,𝑒′,𝜃1
𝑥1:𝜏1.𝑒

′′
1

and 𝜆𝐹2
ℓ,𝑒′,𝜃2

𝑥2:𝜏2.𝑒
′′
2 appearing in 𝑝′, we have 𝜃1 (𝑒′1) ≃ 𝜃2 (𝑒′2) implies 𝜃1 (𝑒′′1 ) ≃ 𝜃2 (𝑒′′2 ).

Proof. For any function appearing in 𝑝′, it either appears in 𝑝 or it does not. We thus have three
cases: either both functions appear in 𝑝 , only one function appears in 𝑝 , or neither function appears
in 𝑝 . In the first case, we are immediately finished because 𝑝 is closure consistent.
Consider the case in which neither function appears in 𝑝 . By Lemma 5.11, we have 𝐹1 = 𝐹2,

𝑒′1 = 𝑒
′
2, 𝑥1 = 𝑥2, 𝜏1 = 𝜏2, and 𝑒

′′
1 = 𝑒′′2 . For clarity, let 𝐹 = 𝐹1, 𝑒′ = 𝑒′1, 𝑥 = 𝑥1, 𝜏 = 𝜏1, and 𝑒′′ = 𝑒′′1 ; then

we are considering two functions which appear in 𝑝′ but not in 𝑝 which are written 𝜆𝐹
ℓ,𝑒′,𝜃1

𝑥:𝜏.𝑒′′

and 𝜆𝐹
ℓ,𝑒′,𝜃2

𝑥:𝜏.𝑒′′. It remains to show that, if 𝜃1 (𝑒′) ≃ 𝜃2 (𝑒′), then 𝜃1 (𝑒′′) ≃ 𝜃2 (𝑒′′).
We observe by inspection of the rules in Figures 16 and 17 that any function appearing in 𝑝′

which does not appear in 𝑝 is the result of substitution of a function appearing in 𝑝 . There must
then exist a function 𝑒3 in 𝑝 such that 𝜃 ′3 (𝑒3) = 𝜆𝐹

ℓ,𝑒′,𝜃1
𝑥:𝜏.𝑒′′ for some 𝜃 ′3. Similarly, there must

exist a function 𝑒4 in 𝑝 such that 𝜃 ′4 (𝑒4) = 𝜆𝐹ℓ,𝑒′,𝜃2𝑥:𝜏.𝑒
′′ for some 𝜃 ′4.

By assumption, we have 𝜃1 (𝑒′) ≃ 𝜃2 (𝑒′). Let 𝑋 ′ = fv(𝑒′) ∪ ftv(𝑒′); then, by the argument of
Lemma 4.7, we have (𝜃1 |𝑋 ′ ) ≃ (𝜃2 |𝑋 ′ ). By Lemma 5.10 and because 𝑝 is closure consistent, we have
𝑥 ∉ dom(𝜃1) and 𝑥 ∉ dom(𝜃2); thus, (𝜃1 |𝑋 ′ ) ≃ (𝜃1 |𝑋 ′∪{𝑥 }) and (𝜃2 |𝑋 ′ ) ≃ (𝜃2 |𝑋 ′∪{𝑥 }).

Let 𝑋 ′′ = fv(𝑒′′) ∪ ftv(𝑒′′). Because 𝑝 is closure consistent and 𝑒3 appears within 𝑝 , 𝑒′ is a
canonical closure of 𝑥 , 𝜏 , and 𝑒′′. By Definition 5.5,𝑋 ′ = 𝑋 ′′\{𝑥}. We have two cases: either𝑋 ′′ = 𝑋 ′

or𝑋 ′′ = 𝑋 ′∪{𝑥}. In either case, the above properties of substitutions give us that (𝜃1 |𝑋 ′′ ) ≃ (𝜃2 |𝑋 ′′ ).
By Definition 4.4, we have (𝜃1 |𝑋 ′′ (𝑒′′)) ≃ (𝜃2 |𝑋 ′′ (𝑒′′)). By the argument of Lemma 4.6 and because
𝑋 ′′ contains the free variables of 𝑒′′, we have 𝜃1 (𝑒′′) ≃ 𝜃2 (𝑒′′) and we are finished. □

We now combine the previous four lemmas to formalize closure consistency preservation.
Lemma 5.13. If 𝑝 is closure consistent and 𝑝 −→ 𝑝′ then 𝑝′ is closure consistent.

Proof. By Definition 5.6 and Lemmas 5.9, 5.10, 5.11, and 5.12. □

Finally, by combining this most recent result with the base case for initial programs above, we
prove that initial programs demonstrate closure consistency throughout execution.
Theorem 1. Let 𝑝0 be an initial program such that 𝑝0 −→∗ 𝑝𝑛 . Then 𝑝𝑛 is closure consistent.
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Proof. By induction on the length 𝑛 of the evaluation chain, proving the base case with
Lemma 5.8 and the inductive step with Lemma 5.13. □

Theorem 1 serves as the basis by which we justify our conservative model of function equality,
but it is not itself sufficient to do so. This theorem shows that syntactically identical program points
and equivalent environments imply syntactically equivalent function bodies. To make practical
use of intensional function equality, however, a programmer needs to be able to evaluate whether
two closures are equal during the program’s execution and thus relies upon e.g. instances of the Eq
typeclass to determine if two closures are equal. Of course, a faulty implementation of equality
could easily produce undesirable results.

For intensional function equality to conservatively approximate semantic function equality, we
insist upon one additional intuitive requirement: that, for any two values captured in the closures
of intensional functions, semantic equality via Eq implies operational equivalence. Since two
syntactically equivalent 𝜆ITS terms in the same evaluation context are operationally equivalent, we
can use the conclusions of Theroem 1 to support a broader argument that operationally equivalent
program points and environments imply operationally equivalent functions.
As stated above, the practical expectation is that the programmer has written in a higher-level

language which encodes exclusively into initial 𝜆ITS programs. Our GHC extension follows this
process in spirit, encoding intensional functions into a form that guarantees closure consistency.
As a result, the programmer may assume the conclusions drawn from Theorem 1.

5.4 Type Checking
We now present a type system for 𝜆ITS. As with the operational semantics, the type system is driven
not by a specific novel feature but by the combination and specialization of existing type theory.
In particular, we include notions of qualified types [Jones 1992], existential types [Mitchell and
Plotkin 1988], and Leibniz equality [Baars and Swierstra 2002; Cheney and Hinze 2002a; Sheard
2005; Weirich 2000; Yakeley 2008].
As mentioned in Section 5.1, 𝜆ITS must support branch-aware runtime type checking. The ex-

pression tyrep 𝜏1 ~ tyrep 𝜏2 ? 𝑒3 : 𝑒4 reduces to 𝑒3 if 𝜏1 = 𝜏2 and 𝑒4 otherwise. Reduction to 𝑒3
should also provide that 𝜏1 = 𝜏2 so that e.g. a function expecting 𝜏1 may accept 𝜏2 in that branch. We
support this behavior via a standard most general unifier (MGU) relation [Pierce 2002; Robinson
1965], defined as follows to acommodate our list-based representation of substitutions.

Definition 5.14. We write 𝜏1 𝜃∼ 𝜏2 to denote that 𝜃 is a most general unifier of 𝜏1 and 𝜏2. Specifically,
let substitution equivalence ≃ be defined for 𝜆ITS in a fashion similar to Definition 4.4. Then 𝜏1 𝜃∼ 𝜏2
iff (1) 𝜃 (𝜏1) = 𝜃 (𝜏2); and (2) for any other 𝜃 ′1 such that 𝜃 ′1 (𝜏1) = 𝜃 ′1 (𝜏2), there exists some 𝜃 ′2 and 𝜃

′′

such that 𝜃 ′1 ≃ 𝜃 ′2 and 𝜃 ′2 = 𝜃 ∥ 𝜃 ′′.
The typing relation of 𝜆ITS uses two mappings, 𝐶 and Γ, from Figure 13. We overload square

brackets to denote the lookup of an item by key (e.g. Γ [𝑥]) and the insertion of a key-value pair
(e.g. Γ [𝑥 ↦→ 𝜎]). We define the typing of expressions in 𝜆ITS as follows:
Definition 5.15. Let 𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜎 be the least relation satisfying the rules in Figure 18.
In addition to a typical type environment, expression, and checked type, this relation includes

places for a constraint name mapping𝐶 and a constraint set𝑄 .𝐶 tracks the type of each constraint
function, allowing us to determine e.g. the type of Eqwhen its corresponding constraint is mentioned.
𝑄 indicates available constraint instances and mirrors𝑊 of the operational semantics. These
structures are fundamental to the T-Witness rule, which consults 𝑄 to ensure that the constraint is
satisfied and consults 𝐶 to determine the type of its implementation.
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T-Clo
𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜏 𝐹 𝜏 ∈ 𝑄
𝐶;𝑄 ; Γ ⊢ ⟨𝐹, 𝑒, 𝜏 ′⟩ : clo 𝐹

T-TRep
𝐶;𝑄 ; Γ ⊢ tyrep 𝜏 : tyrep 𝜏

T-Lam
𝐶;𝑄 ; Γ ⊢ 𝜃 (𝑒′) : [clo 𝐹] 𝐶;𝑄 ; Γ [𝑥 ↦→ 𝜃 (𝜏)] ⊢ 𝜃 (𝑒) : 𝜏 ′

𝐶;𝑄 ; Γ ⊢ (𝜆𝐹
ℓ,𝑒′,𝜃𝑥:𝜏.𝑒) : 𝜃 (𝜏)

𝐹−→𝜏 ′

T-TLam
𝐶;𝑄 ∪𝑄 ′; Γ ⊢ 𝑒 : 𝜎 𝛼 ∉ ftv(𝑄, Γ)
𝐶;𝑄 ; Γ ⊢ (Λ𝛼.𝑄 ′ ⇒ 𝑒) : (∀𝛼.𝑄 ′ ⇒ 𝜎)

T-App
𝐶;𝑄 ; Γ ⊢ 𝑒1 : 𝜏

𝐹−→𝜏 ′ 𝐶;𝑄 ; Γ ⊢ 𝑒2 : 𝜏
𝐶;𝑄 ; Γ ⊢ 𝑒1 𝑒2 : 𝜏 ′

T-TApp
𝐶;𝑄 ; Γ ⊢ 𝑒 : ∀𝛼.𝑄 ′ ⇒ 𝜎 [𝛼 ↦→ 𝜏] (𝑄 ′) ⊆ 𝑄

𝐶;𝑄 ; Γ ⊢ 𝑒 𝜏 : [𝛼 ↦→ 𝜏] (𝜎)
T-Witness

𝐹 𝜏 ∈ 𝑄 𝐶 [𝐹 ] = ∀𝛼 ′ . 𝜏 ′

𝐶;𝑄 ; Γ ⊢ 𝐹 𝜏 : [𝛼 ′ ↦→ 𝜏] (𝜏 ′)

T-Ident
𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜏 𝐹−→𝜏 ′

𝐶;𝑄 ; Γ ⊢ identify 𝑒 : ppt
T-Inspect

𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜏 𝐹−→𝜏 ′

𝐶;𝑄 ; Γ ⊢ inspect 𝑒 : [clo 𝐹]

T-Pack
𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜏 𝐹 𝜏 ∈ 𝑄

𝐶;𝑄 ; Γ ⊢ pack 𝑒 as 𝐹 𝜏 : clo 𝐹

T-Unpack

𝐶;𝑄 ; Γ ⊢ 𝑒 : clo 𝐹
𝐶;𝑄 ∪ {𝐹 𝛼}; Γ [𝑥1 ↦→ 𝛼] [𝑥2 ↦→ (tyrep 𝛼)] ⊢ 𝑒′ : 𝜎 𝛼 ∉ ftv(𝑄, Γ, 𝜎)

𝐶;𝑄 ; Γ ⊢ unpack 𝑥1 : ∃𝛼 as 𝑥2 = 𝑒 in 𝑒
′ : 𝜎

T-Let
𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜎 𝐶;𝑄 ; Γ [𝑥 ↦→ 𝜎] ⊢ 𝑒′ : 𝜎 ′

𝐶;𝑄 ; Γ ⊢ let 𝑥:𝜎 = 𝑒 in 𝑒′ : 𝜎 ′

T-Like

𝐶;𝑄 ; Γ ⊢ 𝑒1 : tyrep 𝜏1
𝐶;𝑄 ; Γ ⊢ 𝑒2 : tyrep 𝜏2 𝜏1

𝜃∼ 𝜏2 𝐶;𝜃 (𝑄);𝜃 (Γ) ⊢ 𝑒3 : 𝜎 𝐶;𝑄 ; Γ ⊢ 𝑒4 : 𝜎
𝐶;𝑄 ; Γ ⊢ 𝑒1 ~ 𝑒2 ? 𝑒3 : 𝑒4 : 𝜎

(omitted for brevity: rules for 𝑥 , ℓ , true, false, ==, nil𝜏 , ::, nil?, and if)

Fig. 18. 𝜆ITS Expression Type Checking

Most of the rules presented in Figure 18 are typical for a type system supporting these features.We
discuss here the rules which are most relevant to typing intensional functions and their applications.
The T-Lam rule is unusual, for instance, in that it performs substitution operations on the expressions
that it is typechecking. While substitutions generated by the evaluation of expressions would call
the decidability of the type system into question, the substitutions performed here are already part
of the expression being typechecked and do not present such a difficulty. To establish decidability,
we consider a function which eagerly performs all of the substitutions suspended in intensional
functions throughout the program. The result of that function serves as evidence for a well-founded
induction to establish that this type system is otherwise syntax directed. Incidentally, we define
this substitution function in Section B.1.2 as part of our soundness proof.
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T-Prog

𝐶 = {𝐹 ↦→ ∀𝛼. 𝜏 | (class 𝐹 : ∀𝛼. 𝜏;) ∈ 𝑐}
𝑊 =

{
𝑞 ↦→ 𝑒′

��� (instance 𝑞 = 𝑒′;) ∈ 𝑑} 𝑄 = {𝑞 | (𝑞 ↦→ 𝑒′) ∈𝑊 }
∀(𝐹 𝜏 ↦→ 𝑒′) ∈𝑊 . ∃(𝐹 ↦→ ∀𝛼. 𝜏 ′) ∈ 𝐶.𝐶;𝑄 ; ∅ ⊢ 𝑒′ : [𝛼 ↦→ 𝜏] (𝜏 ′) 𝐶;𝑄 ; ∅ ⊢ 𝑒 : 𝜎

⊢ 𝑐 𝑑 𝑒 : 𝜎

Fig. 19. 𝜆ITS Program Type Checking

The T-Lam rule is also notable because it requires 𝑒′ to have type [clo 𝐹]where 𝐹 is the constraint
function of the intensional function being typed. clo 𝐹 is a bounded existential type satisfying 𝐹 .
This ensures that the closure of the intensional function is the list of type-tagged values expected
in Section 5.3. These values can be extracted with the inspect projector via the T-Inspect rule.

The type-tagged values in these closures are packed using the T-Pack rule, which matches typical
presentations of bounded existential types. The T-Unpack rule is somewhat unusual in that the
unpack expression syntax includes three bindings: one for the packed value, a second for the type of
that value, and a third for a runtime witness of that type (in the form tyrep 𝜏 ). This type witness is
used in runtime type comparison expressions 𝑒1 ~ 𝑒2 ? 𝑒3 : 𝑒4 similar to (but without the elaborate
GADT machinery of) Refl in Haskell [Baars and Swierstra 2002; Yakeley 2008].

Having defined expression typechecking, we now define program typechecking:
Definition 5.16. Let 𝑝 : 𝜎 be the least relation satisfying the rules in Figure 19.
This definition consists of a single rule which, like E-Prog, creates appropriate environmental

structures from the program and then handles the program’s body expression. This rule also checks
to ensure that each typeclass instance’s expression conforms to the type given in its typeclass.

We assert the soundness of 𝜆ITS as follows:
Theorem 2 (Soundness). Suppose ⊢ 𝑝 : 𝜎 . Then either 𝑝 is of form 𝑐 𝑑 𝑣 or there exists some 𝑝′
such that 𝑝 −→ 𝑝′ and ⊢ 𝑝′ : 𝜎 .
The proof of this theorem proceeds first by encoding 𝜆ITS in another language established to

be sound and then proving that the properties of the encoding together with the soundness of
the target language imply the soundness of 𝜆ITS. The encoding process is generally unremarkable
in light of previous work: 𝜆ITS is a form of System F [Girard 1971; Reynolds 1974] extended with
existential types [Mitchell and Plotkin 1988], runtime type witnesses [Baars and Swierstra 2002;
Cheney and Hinze 2002a; Sheard 2005; Weirich 2000; Yakeley 2008], degenerate type classes [Hall
et al. 1996], and a typical qualification of types using constraints [Jones 1992]. Each of these features
have established encodings [Cheney and Hinze 2002b; Hall et al. 1996; Pottier and Gauthier 2006b;
Xi et al. 2003] into System F extended with GADTs, which has been proven sound in many forms
(e.g. [Sulzmann et al. 2007; Xi et al. 2003] among others). Our proof appears in Appendix B.

5.5 Discussion By Example
We now illustrate this system by discussing an example program we present incrementally. We
begin with a small code fragment which defines the notion of equality and specifies the behavior
of equality on program points.

1 class Eq: ∀a. a Eq−−→ a
Eq−−→ bool;

2 instance Eq ppt = 𝜆
Eq
1,[],[ ]x:ppt. 𝜆

Eq
2,[pack x as Eq ppt],[ ]y:ppt. x == y;

The constraint function Eq is associated with a typical type signature for equality. The instance
defines equality for ppt, the type of program points, in terms of a primitive built for this purpose.
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Note that the inner function captures the value x, of type ppt, in closure. This incurs an interesting
typing burden: we must prove that ppt is Eq, and this is what we are in the process of defining! This
burden inspired our choice to make top-level instances in 𝜆ITS recursively bound. This choice is not
out of place: Haskell, for instance, has the same need for recursive instance bindings to support
instances on recursive data types.

We next define equality on booleans:

3 instance Eq bool = 𝜆
Eq
3,[],[ ]x:bool. 𝜆

Eq
4,[pack x as Eq bool],[ ]y:bool.

4 if x then y else if y then false else true;

This definition follows the same structure as with program points above. Our next step is to define
equality on individual closure items which indicate that they are equatable:

5 instance Eq (clo Eq) = 𝜆
Eq
5,[],[ ]x:clo Eq. 𝜆

Eq
6,[pack x as Eq (clo Eq)],[ ]y:clo Eq.

6 unpack vx:∃ tx as rx = x in
7 unpack vy:∃ ty as ry = y in
8 rx ~ ry ? (Eq tx) vx vy : false ;

This example illustrates the need for runtime type comparison: although we know that the elements
in the two closures have definitions of equality, we must know that they are the same type to apply
such a definition to both elements. We accomplish this by unpacking both existentials to obtain
their values and their runtime type representatives. If these representatives match, then we know
the types are the same and can use the equality definition of either value to compare them both.
Otherwise, the values are not of the same type and so we know they are not equal.

We next define equality on lists of closures:

9 instance Eq [clo Eq] = 𝜆
Eq
7,[],[ ]x:[clo Eq]. 𝜆

Eq
8,[pack x as Eq ([clo Eq])],[ ]y:[clo Eq].

10 if nil? x and nil? y then true else if nil? x or nil? y then false else
11 (Eq (clo Eq)) (hd x) (hd y) and (Eq [clo Eq]) (tl x) (tl y) ;

This definition simply compares the lists’ elements pointwise, relying upon the definition of closure
item equality above. We can finally give a definition for equality between two intensional functions:

11 instance Eq (bool
Eq−−→ bool) =

12 𝜆
Eq
9,[],[ ]x:bool

Eq−−→ bool. 𝜆
Eq

10,[pack x as Eq (bool
Eq−−→ bool)],[ ]

y:bool
Eq−−→ bool.

13 (Eq ppt) (identify x) (identify y) and (Eq [clo Eq]) (inspect x) (inspect y) ;

This definition compares the identities and closures of the intensional functions as discussed in
Section 2 (recall Figure 5). While the simplified typeclasses of 𝜆ITS do not permit polymorphism in
the function’s domain or codomain, our Haskell+ItsFn implementation does.
We can finally create two functions using different expressions and compare the functions

themselves for equality:

14 let f:(bool
Eq−−→ bool) = (Eq bool) true in

15 let g:(bool
Eq−−→ bool) = (Eq bool) true in

16 (Eq (bool
Eq−−→ bool)) f g

Our two functions are partially-applied boolean equality functions, both of which have captured
true in closure and both of which have the program label 4. As a result, they are considered equal
and this program evaluates to true.
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6 Implementation
6.1 Intensional Functions
We have implemented[Palmer and Filardo 2024b] the IntensionalFunctions extension in a
branch of GHC 9.2. Ideally, intensional functions would be well-integrated into the language
runtime; intensional functions could, for instance, be given a dedicated heap representation similar
to extensional functions to minimize runtime overhead. But this approach is rife with subtle
challenges worthy of their own study. What impacts do compiler optimizations such as inlining
have on the semantics of intensional functions? Is a compiler permitted to inline a value which
would otherwise be captured in closure? Is a compiler permitted to deduplicate identical function
definitions within a module or across modules? These and other problems appear surmountable
but require careful consideration which we leave to future work.

1 data ClosureItem c where
2 ClosureItem :: forall c a.
3 (c a, Typeable a) => a -> ClosureItem c
4 data ItsFun c i o =
5 ItsFun Label [ClosureItem c] (i -> o)

Fig. 20. Simplified Intensional Functions Encoding

Our IntensionalFunctions extension of
GHC is a proof-of-concept which performs a high-
level binding-aware encoding. Intensional func-
tions are defined internally using types similar
to those in Figure 20. ItsFun carries the values
produced by the three intensional function elimi-
nators: identification, inspection, and application.
The ClosureItem GADT represents values captured in closure while the Label type uniquely iden-
tifies the definition site of the function. (The actual types used in our encoding are somewhat
more elaborate for reasons described below in Section 6.2.) An expression like \%Eq x -> x + y is
translated internally to ItsFun lbl [ClosureItem @Eq y] (\x -> x + y). Here, @Eq is a type application:
the ClosureItem constructor requires an Eq instance for the type of y.
This encoding is not merely syntactic. Note that there are two free variables in the expression

\x -> x + y, but we did not capture the operator (+) in a ClosureItem. In this example, we presume y

to be locally defined while (+) is defined at top level in another module. GHC provides top-level
bindings by linking and only captures local values in closure at runtime. Our encoding must match
this behavior and so performs desugaring after, and with regards to, name resolution.

6.2 Saturated Application
The code in Figure 20 is simplified for presentation. Our Haskell+ItsFn implementa-
tion uses more elaborate types, which we initially motivate using the 𝜆ITS expression(
𝜆
Eq
1,[],[ ]x:ppt. 𝜆

Eq
2,[pack x as Eq],[ ]y:ppt.x == y

)
a b.

The variable x is captured in the closure of the inner function because it is free where that
function is defined. As x (of type ppt is captured in closure, we must show Eq ppt. But note that
the overall expression applies both arguments a and b simultaneously; there is no opportunity for
the constraint Eq ppt to be used. An uncurried form of this function, when called, would have no
need for a proof of this constraint.

The problem is more compelling when considering itsBind as described in Section 3, which has
type m a ->%c (a ->%c m b) ->%c m b. Just as above, calling itsBind would require us to prove c (m a).
While this may sometimes be satisfiable, it would be onerous to expect of every intensional monad.
itsBind is typically called with both arguments at once, meaning that the closure for which we are
proving this constraint will often be unused.
Briefly, consider modifying the grammar of 𝜆ITS in three ways. First, we now write functions

as 𝜆𝐹
ℓ,𝑒′,𝜃𝑥:𝜏.𝑒 to allow multiple parameters. Second, we write applications as 𝑒 𝑒 so function

applications may have multiple arguments. Finally, we write function types as 𝜏
𝐹−→𝜏 ′ to reflect these

changes. Call sites which saturate the callee need not create a closure and therefore do not impose
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Table 1. Comparing Plume Implementations

Implementation Code Lines in Closure Definition Unit Test TimeType Decl. Type Annot. Term Defn. Total
Extensional 89 106 438 633 1.72
Intensional 10 84 402 496 4.95

a constraint on the provided arguments. Note that this moves the burden of proving constraints to
function calls rather than function definitions, as we do not know until application whether the
constraints will be necessary. Our implementation of Haskell+ItsFn uses this saturation awareness
to ease typing burdens, especially in the case of intensional monads.

6.3 Intensional Plume
As a preliminary test of the usability of Haskell+ItsFn, we have reimplemented a program analysis,
Plume [Fachinetti et al. 2020], in Haskell twice. Plume encodes program behavior as reachability
properties in a specialized pushdown automaton, the closure of which is well-suited to an intensional
monad as described in Section 3. Our first artifact implements Plume using intensional monads for
indexing and lookup. Our second artifact uses extensional functions and manual defunctionalization.
Table 1 shows the number of lines of code used in each implementation to define Plume’s

deductive closure algorithm. For illustration, we break these line counts into three categories:
type declarations (e.g. data, newtype), type annotations (e.g. function signatures, instance), and term
definitions (e.g. function bodies). Other code (e.g. comments, import declarations) were not included.
We observe that the implementations’ term definitions are comparably verbose. Both imple-

mentations include type annotation boilerplate; for each closure rule, the intensional implementa-
tion repeats a type signature while the extensional implementation declares a typeclass instance.
However, the extensional implementation must declare data types to represent defunctionalized
continuations (and their explicit closures) as in line 1 of Figure 4a; this alone accounts for more than
half of the 25% increase in line count between the implementations. Subjectively, the intensional
implementation is much more readable; we elaborate on this difference in Appendix A.

As mentioned in Section 6.1, Haskell+ItsFn is a proof-of-concept extension despite being built
on a production-grade compiler. Table 1 includes a rudimentary benchmark: the average of ten
single-threaded executions of the Plume unit tests (drawn from the original artifact). We observe
that the intensional implementation takes approximately three times longer to produce the same
results.
While we have not directly examined Haskell+ItsFn to identify the cause of this poor perfor-

mance, our proof-of-concept implementation has several qualities that help to explain it. First: the
GADT encoding in Figure 20 stores its own copy of the function’s environment separate from that
kept by the GHC runtime, leading to needless allocation and copying. Second: this copy is stored
in the form of a linked list, meaning that e.g. Ord between two intensional functions could involve
numerous indirections. Third: as ClosureItems individually capture their constraints, GHC is unable
to fuse their implementations of e.g. Ord as it would when deriving Ord for a constructor of multiple
arguments as in a manually defunctionalized artifact.
We suspect that the above problems would be addressed by integrating intensional functions

properly with the GHC runtime, giving them a heap representaton extending that of extensional
functions. Intensional functions would then store a single, unboxed environment and a single
pointer to the fused implementation of its constraint. This would additionally allow existing
optimizations (e.g. tail call optimization) to be applied to intensional functions almost transparently.
Although full integration does raise some interesting questions, such as when a compiler can inline
or eliminate values from a closure in light of intensional constraints, this proper integration is
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primarily an engineering task distinct from the theoretical development above and so beyond the
scope of this paper.

7 Related Work
Defunctionalization was originally developed [Reynolds 1972] as a whole-program transformation
of an untyped program to use a single global dispatch function in place of every higher-order
function call. Many related advancements are summarized in the later republication of that work
[Reynolds 1998]. Defunctionalization has been extended to simply-typed [Bell et al. 1997; Tolmach
and Oliva 1998] and polymorphically-typed [Pottier and Gauthier 2004, 2006a] languages, the
latter of which relied upon a GADT-based encoding of function symbols as in our extensional
encoding in Section 2. Similarly, modular (as opposed to whole-program) defunctionalization has
been developed [Fourtounis et al. 2014] in a fashion similar to our implementation’s approach.
Reynolds’s original defunctionalization confounds program analyses and optimizers as, on

simplistic inspection, all higher-order call sites reach a function containing the bodies of all higher-
order functions. Flow analysis has been used to refine generated dispatch functions to make the
functions available at specific call sites more apparent [Cejtin et al. 2000]. Recent work [Contractor
and Fluet 2020] has combined this technique with polymorphic type support. Defunctionalization
has also been used to make higher-order programs more comprehensible to first-order program
analysis and transformations [Avanzini et al. 2015; Mitchell and Runciman 2009].

Defunctionalization has been used as a conceptual bridge between first-order and higher-order
languages [Danvy and Nielsen 2001]. This work relates, for instance, evaluation contexts as pre-
sented in Figure 15 to continuations. Later work [Danvy and Millikin 2009] considers refunctional-
ization, an inverse of defunctionalization, to form similar theoretical connections.
Defunctionalization has traditionally been applied to compilation pipelines [Cejtin et al. 2000;

Hutton and Bahr 2016; Palmer and Raty 2018; Tolmach and Oliva 1998] and in similar back-end
settings. Interestingly, Reynolds originally conceptualized defunctionalization as a programmer-
facing design technique [Reynolds 1998], a perspective which has gained recent traction [Epstein
et al. 2011; Koppel 2019; Miller et al. 2014] and which we share here.

One of the most developed programmer-facing uses of defunctionalization is that of serializing
function values. CloudHaskell [Epstein et al. 2011] as implemented by the distributed-closure
library [Tweag I/O Limited 2020] uses GHC-supported static pointers to serve as serializable
defunctionalized symbols for static functions (which have empty closures). Spores [Miller et al. 2014]
in the Scala language perform a similar task but have no static restriction; instead, values captured
in closure by spores are required to be instances of Serializable. Language support for closure
equality was proposed [Appel 1996] long before these works on serialization and closure equality
has been applied heuristically in works like the LMS metaprogramming framework [Rompf and
Odersky 2010]. Intensional functions generalize these approaches by abstracting over the operation
being applied to the closure in question. Although intensional functions are largely compatible
with existing approaches to function serialization — we might, for instance, require the underlying
function to be static when the constraint function is Serializable to support a CloudHaskell-like
approach — we leave to future work the exploration of whether a more general mechanism exists
for supporting constraint functions with specialized constructors such as deserialization.

Section 6.2 discusses saturation-aware application of intensional functions. Optimizations based
upon call arity have been thoroughly studied. GHC itself features call arity transformations to aid
in optimization [Breitner 2015a] which have been proven sound [Breitner 2015b].

The 𝜆𝜃 - and 𝜆ITS-calculi in our formalization are lazy substitution calculi: substitution is delayed
until function application. Explicit substitution calculi [Abadi et al. 1990] are similar, but represent
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substitution as an expression form with its own operational semantics. Calculi with explicit repre-
sentation of substitution have been proposed as a common functional compilation target [Hardin
et al. 1996]. We similarly seek to understand semantics after code transformation, but our lazy
substitution is more restrictive in a fashion crucial to our proofs: substitutions may only appear
suspended in lambda terms rather than in any subexpression.
In Section 5.3, we observe that the lazy substitutions of intensional functions are similar to

environments captured in closure: non-locals are associated with substitutions rather than values.
Contextual types [Jang et al. 2021; Nanevski et al. 2008] similarly differentiate between locals and
non-locals using an explicit box construction. Similarly, modal logic has been used to represent
functions capturing non-local values as decomposable structures [Licata et al. 2008] with the goal
of unifying binding and computation under a single logical framework.

8 Conclusions and Future Work
We have presented intensional functions, a type of function which supports user-defined operations
other than application. Such operations are defined in terms of two new eliminators: identification,
which yields a unique identity for a given function (in terms of its definition site in the program); and
inspection, which produces the values the function has captured in closure. Intensional functions
impose type constraints such as equality or orderability on their closures which may then be used
to define e.g. conservative equality on the functions themselves.
We have formalized a lazy substitution lambda calculus, 𝜆ITS, supporting intensional functions

and defined operational semantics and a type system for it. We have also proven the correctness
of conservative equality on intensional functions. This proof can be used as the basis for other
correctness arguments using various type constraints.

Our IntensionalFunctionsGHC extension is not merely syntactic: it uses the scope of bindings
to eliminate unnecessary closure elements and provides a form of saturation-aware application
to avoid constructing unused closures. We have demonstrated its robustness by reimplementing
a program analysis using an intensional coroutine monad. Our extension is, however, a proof of
concept; a more complete implementation would integrate with the language runtime to reduce
overhead and benefit from optimization decisions made later in the compiler pipeline. We leave
these engineering tasks and the theoretical questions they inspire to future work.

Data Availability Statement
The sources for the proof-of-concept Haskell+ItsFn compiler can be found on GitHub.com[Palmer
and Filardo 2024b]. This compiler is accompanied by a standard library for intensional func-
tions[Palmer and Filardo 2024c], a library defining modular deductive closure engines[Palmer
and Filardo 2024a], and implementations of the Plume program analysis with[Palmer and Filardo
2024d] and without[Palmer et al. 2024] intensional functions. A pre-built virtual machine image is
available on Zenodo[Palmer 2024].
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⟨𝑝1, 𝑖, 𝑗⟩ ∈ 𝑆 ⟨𝑝2, 𝑗, 𝑘⟩ ∈ 𝑆 (𝑝0 → 𝑝1 𝑝2) ∈ 𝐺

𝑆
cky−−−→ 𝑆 ∪ {⟨𝑝0, 𝑖, 𝑘⟩}

Fig. 21. CKY Closure

𝐺sum =


AddL → int +
Add → AddL int
AddL → Add +


input = “1 + 2 + 3”

𝑆sum =


⟨ int, 0, 1 ⟩
⟨ + , 1, 2 ⟩
⟨ int, 2, 3 ⟩
⟨ + , 3, 4 ⟩
⟨ int, 4, 5 ⟩


Fig. 22. CKY Example

A AWorked Example of Intensional Monads
In this section, we give a short tutorial-level overview of intensional monads. We will proceed by
considering two implementations of a generalized deductive closure framework: one written in
Haskell which uses manual defunctionalization and one written in Haskell+ItsFn using intensional
functions. We contrast the experience of using these frameworks by implementing the CKY parsing
algorithm, which we briefly review below. We choose CKY parsing for its brevity, but it acts as a
proxy for the variety of algorithms in which deductive closure is applied [Lehmann 1977], including
constraint-based type systems and a variety of program analyses. As with the previous section, all
code examples given here compile using our GHC language extension unless otherwise indicated.

The Haskell+ItsFn deductive closure framework permits closure rules to be specified in terms
of computations in an intensional coroutine monad. The coroutines produced by this monad are
intensional functions and so may be conservatively compared. The framework uses this prop-
erty to deduplicate computational work and to simplify the specification of deductive closure
rules. Ultimately, the framework’s client is able to write rules in the same style as a list-based
nondeterminism monad without appealing to the costly fixed point algorithm that naïve forward
chaining algorithms require [Ullman 1988, §3.4]. We show how the same deductive closure can
be implemented using an extensional coroutine monad via defunctionalization in Haskell but at
significant cost to readability and maintainability.

A.1 CKY Parsing: A Motivating Example
We now review the CKY parsing algorithm to motivate our examination of intensional monads.
The CKY parsing algorithm [Cocke 1969; Kasami 1965; Sakai 1961; Younger 1967] operates on a
grammar provided in Chomsky normal form (CNF): all rules define a non-terminal as a single
terminal, the concatenation of two non-terminals, or (in the special case of a start symbol) an
empty string.5 The algorithm consists of two steps: using the terminal rules to produce a set of
single-token non-terminals and then using the non-terminal rules to concatenate adjacent spans. If,
by the end, a parse of a start symbol spans the entire input string, then parsing was successful. For
simplicity, we will focus on the second step of the algorithm.

More formally: let 𝑝 denote non-terminal names. Let 𝑠 denote spans ⟨𝑝,Z,Z⟩ where the integers
represent the start (inclusive) and end (exclusive) indices of the span in the input string. Let 𝑆
denote a set of such spans. Let 𝑔 denote grammar rules of the form 𝑝 → 𝑝 𝑝 and let𝐺 be a grammar
consisting of a set of such rules. Let

cky−−−→ denote the CKY closure relation defined by the least fixed

5All context-free grammars can be converted into a CNF grammar with no more than a quadratic increase in size [Lange
and Leiß 2009].
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point of the inference rule in Figure 21. Given an initial set of (single-token) non-terminal spans
𝑆0, CKY parsing consists of establishing the fixed point 𝑆0

cky−−−→ . . .
cky−−−→ 𝑆★

cky−−−→ 𝑆★. The input
string, of length 𝑛, is a member of the grammar if and only if ⟨𝑝0, 0, 𝑛⟩ ∈ 𝑆★ with 𝑝0 a grammar
start symbol.
As an example, we can consider the definitions in Figure 22. 𝑆sum contains the non-terminals

extracted from the input string “1 + 2 + 3”. 𝐺sum is a Chomsky normalization of a grammar
accepting addition expressions. At the end of the closure 𝑆sum

cky−−−→* 𝑆 ′sum, the span ⟨Add, 0, 5⟩
appears in 𝑆 ′sum; thus, the input string parses as an addition expression.

1 type NT = String -- Nonterminal symbols
2 data Fact = Rule NT NT NT
3 | Span NT Int Int deriving (Eq, Ord)
4

5 ckyClosureStep :: Set Fact -> Set Fact
6 ckyClosureStep facts = Set.fromList $ do
7 Span p1 i j <- Set.toList facts
8 Span p2 j' k <- Set.toList facts
9 Rule p0 p1' p2' <- Set.toList facts
10 guard $ j == j' && p1 == p1' && p2 == p2'
11 pure $ Span p0 i k
12

13 ckyFullClosure :: Set Fact -> Set Fact
14 ckyFullClosure facts =
15 let facts' = Set.union facts $
16 ckyClosureStep facts in
17 if facts == facts' then facts
18 else ckyFullClosure facts'

Fig. 23. CKY Types and Naïve Closure

Naïve implementation Algorithms such as the
CKY closure presented above can be implemented
simply and inefficiently by calculating the fixed
point of a nondeterministic generator represent-
ing the closure rules. Figure 23 defines basic types
for CKY closure and gives an example of this
“naïve forward-chaining” approach [Ullman 1988,
§3.4]: ckyClosureStep applies the rule in Figure 21
to all viable combinations of the elements of facts.
ckyFullClosure defines a fixed point over this opera-
tion to converge on the closure defined above.

Deductive closure as a library The algorithm in
Figure 23 is appealingly legible: the three premises
of the rule in Figure 21 are immediately evident
in lines 7, 8, and 9. Unfortunately, it is also quite
inefficient. We will improve on this approach using
common techniques to illustrate how intensional
functions and monads preserve legibility in a way that their extensional counterparts do not. In
particular, our redesign will entail

(1) indexing the fact set for faster lookup,
(2) eliminating redundant closure work by using a semi-naïve forward chaining algorithm

[Ullman 1988, §3.5],
(3) structuring our solution as a library for reusability, and
(4) incrementalizing our design to allow closure definitions to be extended.

Incrementalization in particular is important to support extensions of systems relying on de-
ductive closure. A closure-based program analysis, for instance, might be extended to a larger
language or more sophisticated algorithm by the inclusion of additional closure rules. Without
incrementalization, we would need to duplicate the definition of the original rules in the extended
analysis.

A.2 Indexing Facts
We now explore two strategies for improving the algorithm in Figure 23: one using intensional
functions and the other relying upon defunctionalization. We begin by introducing indices over
the set of facts. Lines 7 through 9 in that algorithm amount to a three-way Cartesian product of
facts which line 10 then filters to those elements matching the premises of the rule in Figure 21.
Rather than filtering this product, we can reduce the size of the product by maintaining relevant
indices on our set of facts (e.g. a way to look up spans by their start location).
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1 data IdxSpans = IdxSpans deriving (Eq, Ord)
2 instance Idx Fact IdxSpans where
3 type IdxKey Fact IdxSpans = ()
4 type IdxDeriv Fact IdxSpans = (NT,Int,Int)
5 idx IdxSpans (Rule {}) = Nothing
6 idx IdxSpans (Span t i j) = Just ((), (t,i,j))
7

8 data IdxSpansByStart = IdxSpansByStart deriving (Eq, Ord)
9 instance Idx Fact IdxSpansByStart where
10 type IdxKey Fact IdxSpansByStart = Int
11 type IdxDeriv Fact IdxSpansByStart = (NT,Int)
12 idx IdxSpansByStart (Rule {}) = Nothing
13 idx IdxSpansByStart (Span t i j) = Just (i, (t,j))
14

15 data IdxRulesByProd = IdxRulesByProd deriving (Eq, Ord)
16 instance Idx Fact IdxRulesByProd where
17 type IdxKey Fact IdxRulesByProd = (NT,NT)
18 type IdxDeriv Fact IdxRulesByProd = NT
19 idx IdxRulesByProd (Rule x y z) = Just ((y,z), x)
20 idx IdxRulesByProd (Span {}) = Nothing

Fig. 24. Defunctionalized CKY Indices

1 idxSpans :: Fact ->%Ord Maybe ((), (NT, Int, Int))
2 idxSpans = \%Ord fact -> case fact of
3 Rule {} -> Nothing
4 Span t i j -> Just ((), (t,i,j))
5

6 idxSpansByStart :: Fact ->%Ord Maybe (Int, (NT, Int))
7 idxSpansByStart = \%Ord fact -> case fact of
8 Rule {} -> Nothing
9 Span t i j -> Just (i, (t,j))
10

11 idxRulesByProd :: Fact ->%Ord Maybe ((NT, NT), NT)
12 idxRulesByProd = \%Ord fact -> case fact of
13 Rule x y z -> Just ((y, z), x)
14 Span {} -> Nothing

Fig. 25. CKY Indices as Intensional Functions

We begin by considering the defunctionalization-based approach. Indexing interacts with our
other goals in two ways. First: we are designing our approach as a library to reduce code duplication,
which requires that the library be agnostic to the number, types, and behavior of indices for any
particular closure algorithm. The behavior of each index should be specified as a function, but
indices must also be named when they are accessed. In our defunctionalization-based design, we
must separate the name of the index (which can be e.g. compared) from its behavior (which cannot).
Second: we expect our design to be extensible. As a consequence, we cannot apply the closed

form of defunctionalization we saw in the previous section. Instead, we must be able to add to the
set of defunctionalized symbols without modifying existing code. This leads to the approach shown
in Figure 24. Here, a typeclass Idx (provided by the defunctionalization-based deductive closure
library) describes the properties of a particular index. The idx method is used to digest a fact and
add a relevant mapping to the indexing structure when appropriate.

For instance, consider the process of indexing parsed spans by their start position in CKY’s input
string. Line 13 of Figure 24 indicates that, when a new span is added to the fact set, the index should
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add an entry keyed by its start position i containing the value (t,j) (the rest of the information
in the fact). Line 12 indicates that grammar rules do not add entries to this index. This design is
incremental in that the defunctionalized symbol corresponding to each index (e.g. IdxSpansByStart)
can be provided to the closure library individually and their behavior can be accessed via the
corresponding typeclass instance.

Our Haskell+ItsFn approach is depicted in Figure 25. The use of intensional functions eliminates
the typeclass machinery boilerplate required by defunctionalization. Each index is specified in
terms of a single function which specifies the digest behavior. These intensional functions can be
provided directly to the closure library because the same functions can later be used to look up the
indexing structure which was built using them. This results in an implementation which is shorter
and easier to read than its defunctionalization-based counterpart.

A.3 Eliminating Duplicate Work
The above illustrates how the Haskell+ItsFn framework supports indexing with less boilerplate
than its defunctionalization-based counterpart. We will see a more profound difference in our next
improvement to this deductive closure algorithm: the elimination of duplicate work. The naïve
fixed point computation in ckyFullClosure applies ckyClosureStep repeatedly until no new facts are
generated. While this produces a correct result, it also produces an increasing set of duplicate
conclusions on each iteration. For instance, consider the example in Figure 22. After the first call to
ckyClosureStep, the span ⟨AddL, 0, 2⟩ will be generated. This span will be generated again on each
subsequent call to ckyClosureStep because its premises still exist in the set of facts. In the worst
case, a closure algorithm might generate only one new fact per closure pass (while generating all
previously-learned facts on each of those passes), causing a quadratic factor of wasted effort over
the algorithm’s execution.

1 ckyClosureStep :: Set Fact -> Set Fact
2 ckyClosureStep facts = Set.fromList $
3 let twoLeft = [generator] <*> Set.toList facts in
4 let oneLeft = twoLeft <*> Set.toList facts in
5 let results = oneLeft <*> Set.toList facts in
6 results
7 where generator =
8 \(Span p1 i j) ->
9 \(Span p2 j' k) ->
10 \(Rule p0 p1' p2') ->
11 if j == j' && p1 == p1' && p2 == p2'
12 then [Span p0 i k] else []

Fig. 26. Continuation-Based Naïve CKY Closure

(Haskell)

We can inspire an improvement to this naïve
closure by redesigning ckyClosureStep in terms
of a separate generator function. Setting aside
the complexities of MonadFail, the ckyClosureStep

in Figure 26 calculates the same set as in Fig-
ure 23. In this new implementation, generator
is responsible for calculating conclusions from
the CKY closure rule while the rest of the func-
tion is responsible for iterating over combi-
nations of facts to satisfy the premises. This
separation of concerns makes clearer the need
for ckyFullClosure: the ckyClosureStep function
searches for conclusions using the existing set
of facts. To compute the full deductive closure, however, we must consider all existing and future
facts that may satisfy our premises. The naïve fixed-point calculation addresses this by iteratively
reprocessing the whole fact set. A semi-naïve forward-chaining algorithm [Ullman 1988, §3.5], on
the other hand, considers only new combinations of premises. We can accomplish this by preserving
in-progress generator computations in order to supply future facts to them.6
Consider specifically the binding twoLeft on line 3 of Figure 26. This list contains the partial

application of the generator function to one fact; each of these functions is waiting for another two

6Our use of suspended generators is heavily inspired by the implementation of tabling in XSB Prolog [Swift and Warren
2010]. Our implementation’s use of indices and of suspended queries over them within generators can be seen as forming
its Rete network [Forgy 1982] on the fly.
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1 data ClosureStep input where
2 Step1 :: ClosureStep (NT, Int, Int)
3 Step2 :: NT -> Int -> ClosureStep (NT, Int)
4 Step3 :: Int -> Int -> ClosureStep NT
5 deriving instance (Eq input) => (Eq (ClosureStep input))
6 deriving instance (Ord input) => (Ord (ClosureStep input))
7

8 instance Computation Identity Fact ClosureStep where
9 compute computation input = case computation of
10 Step1 ->
11 let (y, i, j) = input in
12 pure $ onIdx IdxSpansByStart j $ Step2 y i
13 Step2 y i ->
14 let (z, k) = input in
15 pure $ onIdx IdxRulesByProd (y,z) $ Step3 i k
16 Step3 i k ->
17 let x = input in
18 pure $ finished $ Set.singleton $ Span x i k
19

20 ckyClosure :: Identity (ComputationStepResult Identity Fact)
21 ckyClosure = pure $ onIdx IdxSpans () Step1

Fig. 27. Extensional CKY Closure

1 ckyClosure :: Computation (ItsIdentity Ord) Fact
2 ckyClosure = intensional Ord do
3 (y, i, j) <- idxLookup idxSpans ()
4 (z, k) <- idxLookup idxSpansByStart j
5 x <- idxLookup idxRulesByProd (y,z)
6 itsPure %@ Set.singleton (Span x i k)

Fig. 28. Intensional CKY Closure

facts before drawing conclusions. In this way, each of these partially applied generators represents
a continuation of the generation process. Upon arrival of a new fact, the generator function is
called to produce a 2-ary function which is then added to the list of 2-ary continuations. Then,
each 2-ary continuation is called with the new fact to produce new 1-ary continuations, and so on.
By invoking generators only with new facts, we can avoid passing duplicate combinations to our
generator; by saturating all generators with each new fact, we can ensure that all combinations
are considered at least once. This allows us to elide the ckyFullClosure function used by the naïve
algorithm without affecting our result.
In defining a general deductive closure library, we must contend with additional concerns.

Closure rules may have different numbers of premises, so we must track these continuations
in a general form. To incorporate indexing as presented in the previous subsection, we must
support continuations of varying input types. In order to deduplicate these continuations, we must
defunctionalize them, giving each a distinct name.

Figure 27 illustrates the CKY closure algorithm implemented in a defunctionalization-based clo-
sure framework with these features. The ClosureStep data type is a GADT representing continuations
of the closure process; it is parameterized on the input the closure step is expecting. Continuations
are expressed to the closure framework via the onIdx function, which accepts an index, a key, and
a defunctionalized continuation. Line 21, for instance, defines the starting point of the closure
process: it indicates that, for each value associated with the key () within the IdxSpans index (from
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1 ckyClosure :: Computation (ItsIdentity Ord) Fact
2 ckyClosure = itsBind %@ (idxLookup idxSpans ()) %@
3 \%Ord (y, i, j) -> itsBind %@
4 (idxLookup idxSpansByStart j) %@
5 \%Ord (z, k) -> itsBind %@
6 (idxLookup idxRulesByProd (y,z)) %@
7 \%Ord x -> itsPure %@
8 Set.singleton (Span x i k)

Fig. 29. Simplified Desugaring of Fig. 28

Figure 24), the continuation identified by Step1 will be executed. Continuations are executed via the
Computation typeclass’s compute method, which accepts the defunctionalized continuation symbol
and its corresponding input; that is, compute is the dispatch function for this defunctionalization.
When Step1 is executed, line 11 unpacks the input (a parsed span with grammar rule y, start index
i, and end index j) and the following line produces another continuation. This latter continuation
is waiting for another parsed span but uses the indexing mechanism to limit inputs to those spans
with a start index of j. This continuation construction process continues until the compute function
creates a result with the library-supplied finished function on line 18. This generated fact is then
collected by the library to be supplied to all generator continuations as a future step in the closure
process.

Figure 28 illustrates the same closure rule implemented in a closure framework in Haskell+ItsFn
using intensional functions. The closure rule is defined in terms of an intensional monad expression.
As with extensional monad expressions, this code is syntactic sugar for a series of calls to two
underlying functions: itsPure which injects a pure value into the monad and itsBind which binds
a monadic value as pure within another monadic expression. The key difference, as depicted in
the simplified desugaring in Figure 29, is that the functions representing the remainder of the
expression after a binding operation are intensional rather than extensional and are defined in
terms of a constraint function provided after the intensional keyword.7 This allows the Computation

intensional monad, provided by the intensional closure framework, to capture the remainder of
the fact-generating expression as an intensional function so that, as in the extensional framework,
facts generated in the future may be provided to that intensional function to continue its work.
There are three key differences between Figures 27 and 28. The first is relatively obvious: the

Haskell+ItsFn form of this closure rule is less than a third the size of the defunctionalization-
based Haskell form. This is, quite simply, a result of disposing of the boilerplate produced by
defunctionalization. The second difference is more subtle but relates to the discussion in Section 2.1:
in manual defunctionalization, the programmer must enumerate (in this case using ClosureStep) the
types and members of values captured in closure. Line 3 of Figure 27, for instance, requires that
the programmer explicitly name the types of the grammar rule and start index of the parsed span
satisfying the rule’s first premise because these values are used later by the generator. (Indeed, the
same start index type appears again on line 4 because this value is captured in closure twice: it is
defined in the first step but not used until the third.) Lambda abstractions capture their closures
implicitly, so the intensional form of the closure rule does not require this annotation.

The third difference between the two implementation strategies is locality. The meaningful steps
of the defunctionalization-based closure appear on, in order, lines 21, 12, 15, and 18 of Figure 27.
The values described by the index lookup on line 21 are bound on line 11. In Figure 28, steps are
taken in the order in which they appear and values are bound in a natural fashion. Intensional

7One might prefer a syntax like do%Ord to signify the start of an intensional monad expression. This would, however,
require considerable changes to the GHC lexer, which assumes that all blocks will be started by keywords such as do or of.
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functions improve the readability of this code in comparison to the defunctionalization-based
approach in a fashion similar to how sugared do syntax improves the readability of monadic
expressions in comparison to direct application of bind: the hand-encoded form is correct, but the
language-supported form is much easier to understand and maintain.

1 example :: ItsIdentity Ord (Set Fact)
2 example = intensional Ord do
3 initialEngine <-
4 addComputation closure $
5 addIdx idxSpans $ addIdx idxSpansByStart $
6 addIdx idxRulesByProd $ emptyEngine
7 let engine = addFacts
8 [ Rule "AddL" "int" "+"
9 , Rule "Add" "AddL" "int"
10 , Rule "AddL" "Add" "+"
11 , Span "int" 0 1, Span "+" 1 2
12 , Span "int" 2 3, Span "+" 3 4
13 , Span "int" 4 5 ] initialEngine
14 engine' <- close engine
15 itsPure %$ facts engine'

Fig. 30. Intensional CKY Driver

CKY parsing illustrates these three differences
while minimizing the complexity of the provided
code. The significance of these differences scales
with the size and complexity of the closure algo-
rithm being implemented. In Section 6.3, we discuss
a larger-scale example: the differences between two
implementations of a program analysis: one using
defunctionalization and the other using intensional
functions.

For sake of completeness, Figure 30 illustrates how
the Haskell+ItsFn closure definitions are used with
the library to compute the closure of the example in
Figure 22. We begin by constructing initialEngine to
hold the indices and computation which define CKY
closure. We then add the initial set of facts to this
engine, perform closure, and extract the resulting set of facts. We elide the defunctionalization-based
example as it follows an identical structure while using defunctionalized symbols, e.g. IdxSpans,
rather than the names of specific intensional expressions, e.g. idxSpans. Note that both frameworks
would support the addition of further indices or closure rules even after the closure process has
started.

B Proof of Soundness of Typechecking 𝜆ITS
This appendix contains a proof of soundness of the 𝜆ITS type system. Rather than proving this
soundness directly, we demonstrate soundness of 𝜆ITS by a multi-step encoding into System FC,
which has already been proven sound, and then show that properties of the encoding process
together with the soundness of System FC imply the soundness of the languages in each step.
As a side effect of this approach, we will demonstrate, among other properties, that an eagerly-
substituting form of 𝜆ITS is equivalent to its lazily-substituting counterpart.
We organize this appendix to start with 𝜆ITS and work toward a sound system as this places

the most novel material first. The latter part of the encoding largely consists of the application of
established techniques [Cheney and Hinze 2002b; Hall et al. 1996; Pottier and Gauthier 2006b; Xi
et al. 2003] for encoding a variety of language features using GADTs.

B.1 Eliminating Lazy Substitution
The 𝜆ITS system includes lazy substitution as introduced in 𝜆𝜃 in Section 4 in order to simplify
the proof of Theroem 1 in Section 5.3. While useful for this purpose, the presence of an explicit
substitution form 𝜃 in the language grammar is not immediately compatible with established
techniques for proving soundness over lambda calculi. Rather than redevelop those formalisms
for lazy substitution, we opt instead to prove that 𝜆ITS with lazy substitution can be encoded in
𝜆ẼITS, a version of 𝜆ITS which eagerly substitutes variables. In this subsection, we will define a
grammar, operational semantics, and type system for 𝜆ẼITS. We will then establish a correspondence
between 𝜆ITS and 𝜆ẼITS and show that corresponding programs always have the same type and
always evaluate in lock step. At the end of this subsection, we will have reduced our overall proof
burden to showing that typechecking this eagerly-substituting 𝜆ẼITS is sound.
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𝜙 ::= ⟨𝐹, 𝑒, 𝜏⟩ closure items

𝑊̃ ::= {𝑞 ↦→ 𝑒, . . .} constraint witnesses

𝜓 ::= 𝑥 ↦→ 𝑒 | 𝛼 ↦→ 𝜏 substitutions

𝜃 ::= [𝜓, . . .] substitution sequences

𝑣 ::= 𝑥 | ℓ | 𝐹 | 𝜙 | 𝑒 :: 𝑒 | nil𝜏 | true | false |
tyrep 𝜏 | 𝜆𝐹

ℓ,𝑒
𝑥:𝜏.𝑒 | Λ𝛼.𝑄 ⇒ 𝑒

values

𝑒 ::= 𝑣 | 𝑒 𝑒 | 𝑒 𝜏 | identify 𝑒 | inspect 𝑒 |
pack 𝑒 as 𝑞 | unpack 𝑥 : ∃𝛼 as 𝑥 = 𝑒 in 𝑒 |
let 𝑥:𝜎 = 𝑒 in 𝑒 | 𝑒 ~ 𝑒 ? 𝑒 : 𝑒 | 𝑒 == 𝑒 |
hd 𝑒 | tl 𝑒 | nil? 𝑒 | if 𝑒 then 𝑒 else 𝑒

expressions

𝑑 :::= instance 𝑞 = 𝑒; instance declarations

𝑝 ::= 𝑐 𝑑 𝑒 programs

Fig. 31. Grammar for Eagerly-Substituting 𝜆
ẼITS

B.1.1. 𝜆
ẼITS

Operational Semantics

We begin by defining grammar rules for 𝜆ẼITS. The key difference between 𝜆ITS and 𝜆ẼITS is that,
in 𝜆ẼITS, intensional functions do not carry a set of substitutions 𝜃 ; instead, substitutions eagerly
propagate as they do in a traditional 𝜆-calculus. Figure 31 contains eager variations of those
grammar components which may recursively contain an intensional function.
Next, we give a corresponding functional definition to the application of substitution. Note

that, while the terms of the eagerly-substituting language no longer contain substitutions, we will
continue to use this notation in the operational semantics to represent the substitution of several
variables simultaneously (such as in let bindings).
Definition B.1. We use 𝜃 (𝑒) to denote the eager capture-avoiding substitution of 𝜃 in the expression
𝑒; we use similar notation for other grammar terms such as 𝑝 and 𝜏 .

( [𝑥 ′ ↦→ 𝑒′] ∥ 𝜃 ) (𝜆𝐹
ℓ,𝑒′′𝑥:𝜏.𝑒) = 𝜃 (𝜆

𝐹
ℓ,𝑒′′𝑥:𝜏.𝑒) , 𝑥 = 𝑥 ′

( [𝑥 ′ ↦→ 𝑒′] ∥ 𝜃 ) (𝜆𝐹
ℓ,𝑒′′𝑥:𝜏.𝑒) = 𝜃 (𝜆

𝐹
ℓ,𝑒′′𝑥:𝜏.( [𝑥

′ ↦→ 𝑒′]) (𝑒)) , 𝑥 ≠ 𝑥 ′, 𝑥 ∉ fv(𝑒′)
( [𝛼 ′ ↦→ 𝜏 ′] ∥ 𝜃 ) (𝜆𝐹

ℓ,𝑒′′𝑥:𝜏.𝑒) = 𝜃 (𝜆
𝐹
ℓ,𝑒′′𝑥:𝜏.( [𝛼

′ ↦→ 𝜏 ′]) (𝑒))
...

We now give a definition of the operational semantics of 𝜆ẼITS. We begin with a corresponding
definition of evaluation contexts in Figure 32 which, in 𝜆ẼITS, are the evaluation contexts in 𝜆ITS
with intensional functions replaced by their new, substitutionless equivalent.

𝜉 ::= • | 𝜉 𝑒 | 𝜉 𝜏 | identify 𝜉 | inspect 𝜉 | unpack 𝑥 : ∃𝛼 as 𝑥 = 𝜉 in 𝑒 evaluation contexts

| 𝜉 ~ 𝑒 ? 𝑒 : 𝑒 | 𝑣 ~ 𝜉 ? 𝑒 : 𝑒 | 𝜉 == 𝑒 | 𝑣 == 𝜉 | hd 𝜉 | tl 𝜉 | nil? 𝜉 | if 𝜉 then 𝑒 else 𝑒

Fig. 32. 𝜆
ẼITS

Evaluation Contexts

The operational semantics of expressions in 𝜆ẼITS follow in Figure 33. Other than replacing
𝜆ITS grammar with 𝜆ẼITS grammar throughout, the only significant differences between the 𝜆ITS
expression operational semantics in Figure 16 and the 𝜆ẼITS expression operational semantics in
Figure 33 is in the handling of function application and inspection. In 𝜆ITS, variable substitution
stops at lambda abstractions, storing the substitution for later application in E-App and E-Inspect . In
𝜆ẼITS, there are no deferred substitutions to lazily apply; EE-App applies only the substitution related
to its parameter and EE-Inspect applies no substitutions at all.
Definition B.2. We define 𝑊̃ ⊢ 𝑒 ˜−→ 𝑒 to be the least relation satisfying the rules in Figure 33.
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EE-Red
𝑊̃ ⊢ 𝑒 ˜−→ 𝑒′

𝑊̃ ⊢ 𝜉 (𝑒) ˜−→ 𝜉 (𝑒′)
EE-App

𝑊̃ ⊢ (𝜆𝐹ℓ,𝑒′𝑥:𝜏.𝑒1) 𝑒2 ˜−→ ([𝑥 ↦→ 𝑒2]) (𝑒1)

EE-TApp
𝑊̃ ⊢ (Λ𝛼.𝑄 ⇒ 𝑒) 𝜏 ˜−→ [𝛼 ↦→ 𝜏] (𝑒)

EE-Witness
𝑊̃ ⊢ 𝐹 𝜏 ˜−→ 𝑊̃ [𝐹 𝜏]

EE-Identify
𝑊̃ ⊢ identify (𝜆𝐹ℓ,𝑒′𝑥:𝜏.𝑒) ˜−→ ℓ

EE-Inspect
𝑊̃ ⊢ inspect (𝜆𝐹ℓ,𝑒′𝑥:𝜏.𝑒) ˜−→ 𝑒′

EE-Pack
𝑊̃ ⊢ pack 𝑒 as 𝐹 𝜏 ˜−→ ⟨𝐹, 𝑒, 𝜏⟩

EE-Unpack
𝑊̃ ⊢ unpack 𝑥1 : ∃𝛼 as 𝑥2 = ⟨𝐹, 𝑒, 𝜏⟩ in 𝑒′ ˜−→ [𝑥1 ↦→ 𝑒, 𝑥2 ↦→ tyrep 𝜏, 𝛼 ↦→ 𝜏] (𝑒′)

EE-Let
𝑊̃ ⊢ let 𝑥:𝜎 = 𝑒 in 𝑒′ ˜−→ [𝑥 ↦→ 𝑒] (𝑒′)

(omitted for brevity: rules for ~, ==, ::, nil?, and if)

Fig. 33. 𝜆
ẼITS

Operational Semantics: Expression Evaluation Rules

EP-Step
𝑊̃ =

{
𝑞 ↦→ 𝑒

��� (instance 𝑞 = 𝑒;) ∈ 𝑑} 𝑊̃ ⊢ 𝑒 −→ 𝑒′

𝑐 𝑑 𝑒 −→ 𝑐 𝑑 𝑒′

Fig. 34. 𝜆
ẼITS

Operational Semantics: Program Evaluation Rules

Finally, we define a program-level operational semantics for 𝜆ẼITS to correspond to Figure 17.
This definition is identical to its 𝜆ITS counterpart except for the change in grammar.
Definition B.3.We define 𝑝 ˜−→ 𝑝′ to be the least relation satisfying the rule in Figure 34. We
define 𝑝 ˜−→∗ 𝑝′ to hold iff either 𝑝 = 𝑝′ or 𝑝 ˜−→ . . . ˜−→ 𝑝′. We define 𝑝 ˜−→+ 𝑝′ to hold iff
𝑝 ˜−→ 𝑝′′ and 𝑝′′ ˜−→∗ 𝑝′ for some 𝑝′′.

B.1.2. Encoding 𝜆
ITS

in 𝜆
ẼITS

The 𝜆ITS and 𝜆ẼITS systems differ only in that the former performs substitutions lazily at lambda
abstractions while the latter does not. We formalize this relationship through an encoding function
⟦·⟧E which maps 𝜆ITS expressions to 𝜆ẼITS expressions by immediately performing deferred substi-
tutions. This encoding is a homomorphism everywhere except in the case of lambda abstractions
and overloaded to other constructs which contain expressions. Formally:
Definition B.4.We define the encoding function ⟦𝑒⟧E = 𝑒 inductively according to the rules
appearing in Figure 35. We overload this notation to include the encoding of substitutions ⟦𝜃⟧E = 𝜃 ,
programs ⟦𝑝⟧E = 𝑝 , and witness maps ⟦𝑊 ⟧E = 𝑊̃ . Except for cases shown in Figure 35, this
function is a homomorphism.
For the sake of our soundness proof in Section B.3, we observe that this encoding function is

surjective.
Lemma B.5. ⟦·⟧E is surjective.
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𝜆𝐹
ℓ,𝑒′,𝜃𝑥:𝜏.𝑒

�
E

= 𝜆𝐹
ℓ,(⟦𝜃⟧E (⟦𝑒′⟧E ) )

𝑥:𝜏.(⟦𝜃⟧E (⟦𝑒⟧E))
⟦𝑥⟧E = 𝑥

⟦nil𝜏⟧E = nil𝜏

⟦𝑒1 𝑒2⟧E = ⟦𝑒1⟧E ⟦𝑒2⟧E
⟦𝑥 ↦→ 𝑒⟧E = 𝑥 ↦→ ⟦𝑒⟧E

...

Fig. 35. Encoding 𝜆ITS into 𝜆
ẼITS

Proof. By induction on the result of ⟦·⟧E and case analysis of Definition B.4. In particular, one
argument producing a particular 𝜆ẼITS program is the corresponding 𝜆ITS program in which each 𝜃
is empty. □

We can now make observations about this correspondence between 𝜆ITS and 𝜆ẼITS. For our larger
objectives, it is crucial to note that substitution commutes with encoding:
Lemma B.6. For any expression 𝑒 and any substitutions 𝜃 , ⟦𝜃 (𝑒)⟧E = ⟦𝜃⟧E (⟦𝑒⟧E).

Proof. By induction on 𝜃 and then on 𝑒 . In particular, we can first show that this commutativity
holds on individual value and type substitutions. The only particularly interesting case is that of
intensional function expressions. Here, it is crucial that 𝜆ITS adds substitutions to the end of the list
of substitutions held by an intensional function, as this corresponds to applying that substitution
after the others it already holds. If we apply substitutions first and then encode, those substitutions
are suffixed onto any intensional functions and so encoding applies the intensional functions’
susbtitutions first and then applies our 𝜃 . If we encode first, the intensional functions’ substitutions
are applied first in that step and the application of (the encoded form of) 𝜃 follows. In either case,
the substitutions are applied in the same order. □

The above lemma is crucial for showing the properties of operational semantics we will require
for our soundness proof. First: evaluation in 𝜆ITS implies evaluation in 𝜆ẼITS.
Lemma B.7. If𝑊 ⊢ 𝑒 −→ 𝑒′ then ⟦𝑊 ⟧E ⊢ ⟦𝑒⟧E ˜−→ ⟦𝑒′⟧E.

Proof. By induction on 𝑒 , applying Lemma B.6 in each case that an operational semantics rule
uses substitution. □

We state a corresponding property regarding whole 𝜆ITS programs:
Lemma B.8. If 𝑝 −→ 𝑝′ then ⟦𝑝⟧E ˜−→ ⟦𝑝′⟧E.

Proof. By case analysis on 𝑝 . If 𝑝 is initial, then Lemma B.6 applies to the substitution constructed
from the top-level let expression. If 𝑝 is not initial, then Lemma B.7 is sufficient. □

We similarly require that evaluation in 𝜆ẼITS implies evaluation in 𝜆ITS. This is somewhat more
complex, as the encoding operation ⟦·⟧E is not injective: many 𝜆ITS expressions may map to the
same 𝜆ẼITS expression. It is sufficient for our purposes, however, to group 𝜆ITS expressions into
equivalence classes based upon their 𝜆ẼITS encoding.
Lemma B.9. If ⟦𝑊 ⟧E ⊢ ⟦𝑒⟧E −→ ⟦𝑒′⟧E then there exists some 𝑒′′ such that𝑊 ⊢ 𝑒 ˜−→ 𝑒′′ and
⟦𝑒′⟧E = ⟦𝑒′′⟧E.

Proof. By induction on 𝑒 , applying Lemma B.6 in each case that an operational semantics rule
uses substitution. In the specific case of intensional functions, we must proceed by induction on
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the list of substitutions carried by that intensional function in order to generalize over the set of
preimages which may produce ⟦𝑒′⟧E, of which 𝑒′′ is a member. □

As before, we state a similar lemma for whole programs:
Lemma B.10. If ⟦𝑝⟧E ˜−→ ⟦𝑝′⟧E then 𝑝 −→ 𝑝′′ for some 𝑝′′ such that ⟦𝑝′⟧E = ⟦𝑝′′⟧E.

Proof. By case analysis on 𝑝 as in Lemma B.8. □

The above lemmas demonstrate that the lazy substitution and eager substitution systems evaluate
in lock step. This is crucial in using the above encoding function to prove type soundness of 𝜆ITS
given type soundness of 𝜆ẼITS. In the next part of this process, we establish the final requisite
property: that 𝜆ITS programs and their 𝜆ẼITS encodings have the same type.

B.1.3. 𝜆
ẼITS

Type Checking

We now define the type system of 𝜆ẼITS. This type system works over the expression grammar 𝑒 but
produces types 𝜎 in the same grammar as 𝜆ITS. Formally:
Definition B.11.We define 𝐶;𝑄 ; Γ ⊢̃ 𝑒 : 𝜎 as the least relation satisfying the rules appearing in
Figure 36.
The 𝜆ẼITS type system is largely a textual substitution of the 𝜆ITS type system with one key

difference: the eager substitution of 𝜆ẼITS removes the need for substitution on the types and
expressions in the TE-Lam rule.Where the 𝜆ITS type system relies upon performing those substitutions
just in time for typechecking, the 𝜆ẼITS type system has no such problem. Any 𝜆ITS program encoded
in 𝜆ẼITS has already had its substitutions eagerly performed, leading us to the following typing
lemma:
Lemma B.12. 𝐶;𝑄 ; Γ ⊢ 𝑒 : 𝜎 iff 𝐶;𝑄 ; Γ ⊢̃ ⟦𝑒⟧E : 𝜎 .

Proof. By induction on ⟦𝑒⟧E and then case analysis on the proof rule used. The use of ⟦𝑒⟧E as
the witness for well-founded induction is necessary to accommodate the substitutions in the T-Lam
rule. □

As with 𝜆ITS, we next give a typing relation for whole 𝜆ẼITS programs:
Definition B.13. We define ⊢̃ 𝑝 : 𝜎 as the least relation satisfying the rules in Figure 37.
As above, we give a lemma aligning 𝜆ITS with 𝜆ẼITS:

Lemma B.14. 𝑝 : 𝜎 iff ⟦𝑝⟧E : 𝜎 .

Proof. Each of the premises in the T-Prog and TE-Prog rules can be proven from the other using
Definition 35 except the last, which is shown by Lemma B.12. □

In Section B.3, we will use the lemmas from this subsection to prove the soundness of 𝜆ITS from
the soundness of 𝜆ẼITS. Our next goal is to show the soundness of 𝜆ẼITS using a similar encoding.

B.2 Encoding Intensional Functions and Established Features
𝜆ẼITS as defined in the previous subsection is one step closer than 𝜆ITS to traditional calculi in that
it performs eager variable substitution, but it still contains intensional functions and operations
specific to them. In this subsection, we use GADTs’ features to encode intensional functions as
well as other less original features of 𝜆ẼITS. We encode 𝜆ẼITS into a system 𝜆 ¥EN and, similar to the
previous subsection, show that fundamental properties of typing and evaluation are preserved by
this encoding.
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TE-Clo
𝐶;𝑄 ; Γ ⊢̃ 𝑒 : 𝜏 𝐹 𝜏 ∈ 𝑄
𝐶;𝑄 ; Γ ⊢̃ ⟨𝐹, 𝑒, 𝜏 ′⟩ : clo 𝐹

TE-TRep
𝐶;𝑄 ; Γ ⊢̃ tyrep 𝜏 : tyrep 𝜏

TE-Lam
𝐶;𝑄 ; Γ ⊢̃ 𝑒′ : [clo 𝐹] 𝐶;𝑄 ; Γ [𝑥 ↦→ 𝜏] ⊢̃ 𝑒 : 𝜏 ′

𝐶;𝑄 ; Γ ⊢̃ (𝜆𝐹ℓ,𝑒′𝑥:𝜏.𝑒) : 𝜏
𝐹−→𝜏 ′

TE-TLam
𝐶;𝑄 ∪𝑄 ′; Γ ⊢̃ 𝑒 : 𝜎 𝛼 ∉ ftv(𝑄, Γ)
𝐶;𝑄 ; Γ ⊢̃ (Λ𝛼.𝑄 ′ ⇒ 𝑒) : (∀𝛼.𝑄 ′ ⇒ 𝜎)

TE-App
𝐶;𝑄 ; Γ ⊢̃ 𝑒1 : 𝜏

𝐹−→𝜏 ′ 𝐶;𝑄 ; Γ ⊢̃ 𝑒2 : 𝜏
𝐶;𝑄 ; Γ ⊢̃ 𝑒1 𝑒2 : 𝜏 ′

TE-TApp
𝐶;𝑄 ; Γ ⊢̃ 𝑒 : ∀𝛼.𝑄 ′ ⇒ 𝜎 [𝛼 ↦→ 𝜏] (𝑄 ′) ⊆ 𝑄

𝐶;𝑄 ; Γ ⊢̃ 𝑒 𝜏 : [𝛼 ↦→ 𝜏] (𝜎)

TE-Witness
𝐹 𝜏 ∈ 𝑄 𝐶 [𝐹 ] = ∀𝛼 ′ . 𝜏 ′

𝐶;𝑄 ; Γ ⊢̃ 𝐹 𝜏 : [𝛼 ′ ↦→ 𝜏] (𝜏 ′)
TE-Ident

𝐶;𝑄 ; Γ ⊢̃ 𝑒 : 𝜏 𝐹−→𝜏 ′

𝐶;𝑄 ; Γ ⊢̃ identify 𝑒 : ppt

TE-Inspect
𝐶;𝑄 ; Γ ⊢̃ 𝑒 : 𝜏 𝐹−→𝜏 ′

𝐶;𝑄 ; Γ ⊢̃ inspect 𝑒 : [clo 𝐹]
TE-Pack

𝐶;𝑄 ; Γ ⊢̃ 𝑒 : 𝜏 𝐹 𝜏 ∈ 𝑄
𝐶;𝑄 ; Γ ⊢̃ pack 𝑒 as 𝐹 𝜏 : clo 𝐹

TE-Unpack

𝐶;𝑄 ; Γ ⊢̃ 𝑒 : clo 𝐹
𝐶;𝑄 ∪ {𝐹 𝛼}; Γ [𝑥1 ↦→ 𝛼] [𝑥2 ↦→ (tyrep 𝛼)] ⊢̃ 𝑒′ : 𝜎 𝛼 ∉ ftv(𝑄, Γ, 𝜎)

𝐶;𝑄 ; Γ ⊢̃ unpack 𝑥1 : ∃𝛼 as 𝑥2 = 𝑒 in 𝑒
′ : 𝜎

TE-Let
𝐶;𝑄 ; Γ ⊢̃ 𝑒 : 𝜎 𝐶;𝑄 ; Γ [𝑥 ↦→ 𝜎] ⊢̃ 𝑒′ : 𝜎 ′

𝐶;𝑄 ; Γ ⊢̃ let 𝑥:𝜎 = 𝑒 in 𝑒′ : 𝜎 ′

TE-Like

𝐶;𝑄 ; Γ ⊢̃ 𝑒1 : tyrep 𝜏1
𝐶;𝑄 ; Γ ⊢̃ 𝑒2 : tyrep 𝜏2 𝜏1

𝜃∼ 𝜏2 𝐶;𝜃 (𝑄);𝜃 (Γ) ⊢̃ 𝑒3 : 𝜎 𝐶;𝑄 ; Γ ⊢̃ 𝑒4 : 𝜎
𝐶;𝑄 ; Γ ⊢̃ 𝑒1 ~ 𝑒2 ? 𝑒3 : 𝑒4 : 𝜎

(omitted for brevity: rules for 𝑥 , ℓ , true, false, ==, nil𝜏 , ::, nil?, and if)

Fig. 36. 𝜆
ẼITS

Expression Typechecking

TE-Prog

𝐶 = {𝐹 ↦→ ∀𝛼. 𝜏 | (class 𝐹 : ∀𝛼. 𝜏;) ∈ 𝑐}
𝑊̃ =

{
𝑞 ↦→ 𝑒′

��� (instance 𝑞 = 𝑒′;) ∈ 𝑑} 𝑄 =
{
𝑞
�� (𝑞 ↦→ 𝑒′) ∈ 𝑊̃

}
∀(𝐹 𝜏 ↦→ 𝑒′) ∈ 𝑊̃ . ∃(𝐹 ↦→ ∀𝛼. 𝜏 ′) ∈ 𝐶.𝐶;𝑄 ; ∅ ⊢̃ 𝑒′ : [𝛼 ↦→ 𝜏] (𝜏 ′) 𝐶;𝑄 ; ∅ ⊢̃ 𝑒 : 𝜎

⊢̃ 𝑐 𝑑 𝑒 : 𝜎

Fig. 37. 𝜆
ẼITS

Program Type Checking
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¥𝑇 type names
¥𝐾 constructor names
¥𝑥 ::= 𝑥 | ⟨𝐹, ¥𝜏⟩ variables

¥𝑣 ::= ¥𝑥 | ¥𝐾 ¥𝜏 ¥𝑒 | 𝜆 ¥𝑥:¥𝜏.¥𝑒 | Λ𝛼. ¥𝑒 values

¥𝑒 ::= ¥𝑣 | ¥𝑒 ¥𝑒 | ¥𝑒 ¥𝜏 | let ¥𝑥: ¥𝜎 = ¥𝑒 in ¥𝑒 | case 𝑒 of ¥𝛽 | ¥𝑒 == ¥𝑒 expressions
¥𝛽 ::= ¥𝜋 → ¥𝑒 case branches

¥𝜋 ::= ¥𝐾 𝛼 ¥𝑥:¥𝜏 patterns

¥𝜏 ::= 𝛼 | ¥𝑇 ¥𝜏 | ¥𝜏 → ¥𝜏 monotypes
¥𝜎 ::= ∀𝛼. ¥𝜎 | ¥𝜏 polytypes

¥𝛿 ::= data ¥𝑇 𝛼 where ¥𝑅 type declarations
¥𝑅 ::= ¥𝐾:∀𝛼. ¥𝜏 → ¥𝑇 ¥𝜏 constructor declarations

¥𝑝 ::= ¥𝛿 ¥𝑒 programs
¥Γ ::= { ¥𝑥 ↦→ ¥𝜎, . . .} type environments
¥R ::= { ¥𝑅, . . .} constructor environments
¥𝜓 ::= ¥𝑥 ↦→ ¥𝑒 | 𝛼 ↦→ ¥𝜏 substitutions
¥𝜃 ::= [ ¥𝜓, . . .] substitution sequences

Fig. 38. Grammar for Encoding Target 𝜆 ¥EN

B.2.1. 𝜆 ¥EN Operational Semantics

The grammar of our encoding target, 𝜆 ¥EN, appears in Figure 38. The syntax of this target is sig-
nificantly different from that of the previous languages: it includes GADT declarations but not
typeclasses, it contains no program points, booleans, or lists, and its only conditional construct is
the case expression. Programs consist of a sequence of data type declarations followed by a body
expression. A reserved set of variable names corresponding to constraints has been introduced to
support our encoding. We demonstrate here that all of the features of 𝜆ẼITS (including intensional
functions) can be encoded with GADTs using established techniques.

We define the operational semantics for 𝜆 ¥EN using evaluation contexts as in the previous languages.
The evaluation contexts for 𝜆 ¥EN appear in Figure 39. The corresponding operational semantics
appear in Figure 40. Note that we do not have a grammar or operational semantics specifically for
top-level programs; these were necessary in the previous systems only because of the top level
declarations of typeclasses and their instances, which we will encode.

¥𝜉 ::= • | ¥𝜉 ¥𝑒 | ¥𝜉 𝜏 | case ¥𝜉 of ¥𝛽 evaluation contexts

Fig. 39. 𝜆 ¥EN Evaluation Contexts

We formally define the operational semantics of 𝜆 ¥EN as follows (using typical capture-avoiding
substitution):
Definition B.15. We define ¥𝑒 ¥−→ ¥𝑒 to be the least relation satisfying the rules in Figure 40.
The operational semantics on programs follow directly, as we simply step the body expression

of the program.
Definition B.16.We define ¥𝑝 ¥−→ ¥𝑝′ to be the least relation satisfying the rule in Figure 41. We
define ¥𝑝 ¥−→∗ ¥𝑝′ to hold iff either ¥𝑝 = ¥𝑝′ or ¥𝑝 ¥−→ . . . ¥−→ ¥𝑝′. We define ¥𝑝 ¥−→+ ¥𝑝′ to hold iff
¥𝑝 ¥−→ ¥𝑝′′ and ¥𝑝′′ ¥−→∗ ¥𝑝′ for some ¥𝑝′′.
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EN-Red
¥𝑒 ¥−→ ¥𝑒′

¥𝜉 ( ¥𝑒) ¥−→ ¥𝜉 ( ¥𝑒′)
EN-App

(𝜆 ¥𝑥:¥𝜏.¥𝑒1) ¥𝑒2 ¥−→ ([ ¥𝑥 ↦→ ¥𝑒2]) ( ¥𝑒1)

EN-TApp
(Λ𝛼. ¥𝑒) ¥𝜏 ¥−→ ([𝛼 ↦→ ¥𝜏]) ( ¥𝑒)

EN-Let
let ¥𝑥: ¥𝜎 = ¥𝑒 in ¥𝑒′ ¥−→ [ ¥𝑥 ↦→ ¥𝑒] ( ¥𝑒′)

EN-Case

∀1 ≤ 𝑖 < 𝑙 . ¥𝛽𝑖 =
( ¥𝐾 ′ 𝛼 ′1, . . . , 𝛼

′
𝑛′ ¥𝑥 ′1, . . . , ¥𝑥 ′𝑚′ → ¥𝑒′

)
=⇒ ¥𝐾 ≠ ¥𝐾 ′ ∨ 𝑛 ≠ 𝑛′ ∨𝑚 ≠𝑚′

¥𝛽𝑙 = ¥𝐾 𝛼1, . . . , 𝛼𝑛 ¥𝑥1, . . . , ¥𝑥𝑚 → ¥𝑒′′
¥𝜃 = [𝛼1 ↦→ ¥𝜏1, . . . , 𝛼𝑛 ↦→ ¥𝜏𝑛, ¥𝑥1 ↦→ ¥𝑒1, . . . , ¥𝑥𝑚 ↦→ ¥𝑒𝑚]

case ¥𝐾 ¥𝜏1, . . . , ¥𝜏𝑛 ¥𝑒1, . . . , ¥𝑒𝑚 of [ ¥𝛽1, . . . , ¥𝛽𝑘 ] ¥−→ ¥𝜃 ( ¥𝑒′′)

Fig. 40. 𝜆 ¥EN Operational Semantics

EP-Step
𝑊̃ =

{
𝑞 ↦→ 𝑒

��� (instance 𝑞 = 𝑒;) ∈ 𝑑} 𝑊̃ ⊢ 𝑒 −→ 𝑒′

𝑐 𝑑 𝑒 −→ 𝑐 𝑑 𝑒′

Fig. 41. 𝜆 ¥EN Operational Semantics: Program Evaluation Rule

B.2.2. Typechecking 𝜆 ¥EN

We next present a type system for 𝜆 ¥EN. Like 𝜆ITS, we define a most general unifier operation. The
𝜆 ¥EN type system must be able to unify multiple pairs of types to satisfy the requirements of GADTs,
so we define this operation together with a meet operation to join substitutions together in a
unification-compatible fashion. Formally:

Definition B.17.We write ¥𝜏1
¥𝜃∼ ¥𝜏2 to denote that ¥𝜃 is a most general unifier of ¥𝜏1 and ¥𝜏2. We

overload this notation to lists of types: ¥𝜏1
¥𝜃∼ ¥𝜏2 denotes that ¥𝜃 is a most general unifier of ¥𝜏1 and ¥𝜏2.

We define the 𝜆 ¥EN type system below. The techniques applied here are not at all novel and most
closely model the presentation of System FC [Sulzmann et al. 2007]. One distinction is that we
continue to use the MGU relation defined above, which is more in keeping with earlier work
[Peyton Jones et al. 2006], while System FC relies upon constraint-kinded types for unification.
Definition B.18.We define ¥R; ¥Γ ¥⊢ ¥𝑒 : ¥𝜎 as the least relation satisfying the rules appearing in
Figure 42.
As with the previous languages, typechecking of programs merely requires constructing an

appropriate typechecking environment from top-level declarations and using this to check the type
of the program’s body expression.
Definition B.19. We define ¥⊢ ¥𝑝 : ¥𝜎 as the least relation satisfying the rule in Figure 43.
The soundness of the 𝜆 ¥EN type system is the starting point of our proof that 𝜆ITS is sound. As

described above, 𝜆 ¥EN is a nearly perfect subset of System FC [Sulzmann et al. 2007]. System FC
includes sophisticated machinery for type equality coercions which does not appear in 𝜆 ¥EN. However,
the GADTs of System FC only allow type variables as arguments to GADT types in constructor
declarations as opposed to the monotypes permitted in 𝜆 ¥EN; these monotypes can be encoded
as type equality constraints provided as internal arguments to System FC GADT constructors.
Other than this detail, 𝜆 ¥EN is a syntactic and semantic subset of System FC, which has been proven
sound. The 𝜆 ¥EN type system and operational semantics mirror that of the System FC subset except,
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TN-Var ¥R; ¥Γ ¥⊢ ¥𝑥 : ¥Γ [ ¥𝑥]
TN-Lam

¥R; ¥Γ [ ¥𝑥 ↦→ ¥𝜏] ¥⊢ ¥𝑒′ : ¥𝜏 ′

¥R; ¥Γ ¥⊢ 𝜆 ¥𝑥:¥𝜏.¥𝑒′ : ¥𝜏 → ¥𝜏 ′

TN-TLam
¥R; ¥Γ ¥⊢ ¥𝑒 : ¥𝜎 𝛼 ∉ ftv( ¥Γ)

¥R; ¥Γ ¥⊢ Λ𝛼. ¥𝑒 : ∀𝛼. ¥𝜎
TN-App

¥R; ¥Γ ¥⊢ ¥𝑒1 : ¥𝜏1 → ¥𝜏2 ¥R; ¥Γ ¥⊢ ¥𝑒2 : ¥𝜏1
¥R; ¥Γ ¥⊢ ¥𝑒1 ¥𝑒2 : ¥𝜏2

TN-TApp
¥R; ¥Γ ¥⊢ ¥𝑒 : ∀𝛼. ¥𝜎

¥R; ¥Γ ¥⊢ ¥𝑒 ¥𝜏 : [𝛼 ↦→ ¥𝜏] ( ¥𝜎)
TN-Case

¥R; ¥Γ ¥⊢ ¥𝑒0 : 𝜏 ∀𝑖 ∈ {1..𝑛}. ¥R; ¥Γ ¥⊢ ¥𝛽𝑖 : 𝜏 → 𝜏 ′

¥R; ¥Γ ¥⊢ case ¥𝑒0 of [ ¥𝛽1, . . . , ¥𝛽𝑛] : 𝜏 ′

TN-Branch

¥𝐾:∀𝛼 ′1, . . . , 𝛼 ′𝑛 . ¥𝜏1, . . . , ¥𝜏𝑚 → ¥𝑇 ¥𝜏 ′1, . . . , ¥𝜏 ′𝑘 ∈ ¥R ¥𝜃 = [𝛼 ′1 ↦→ 𝛼1, . . . , 𝛼
′
𝑛 ↦→ 𝛼𝑛]

( ¥𝜏 ′′1 , . . . , ¥𝜏 ′′𝑘 )
¥𝜃 ′
∼ ( ¥𝜃 ( ¥𝜏 ′1), . . . , ¥𝜃 ( ¥𝜏 ′𝑘 )) ¥R; ¥Γ [ ¥𝑥1 ↦→ ¥𝜃 ′ ( ¥𝜏1), . . . , ¥𝑥𝑚 ↦→ ¥𝜃 ′ ( ¥𝜏𝑚)] ¥⊢ ¥𝑒 : ¥𝜃 ′ ( ¥𝜏)

{𝛼1, 𝛼 ′1, . . . , 𝛼𝑛, 𝛼 ′𝑛} ∩ ftv( ¥Γ, ¥𝜏, ¥𝜏 ′′1 , . . . , ¥𝜏 ′′𝑘 ) = ∅
¥R; ¥Γ ¥⊢ ¥𝐾 𝛼1, . . . , 𝛼𝑛 ¥𝑥1, . . . , ¥𝑥𝑚 → ¥𝑒 : ¥𝑇 ¥𝜏 ′′1 , . . . , ¥𝜏 ′′𝑘 → ¥𝜏

Fig. 42. 𝜆 ¥EN Expression Typechecking

TN-Prog

∀(data ¥𝑇 𝛼1, . . . , 𝛼𝑛 where ¥𝑅) ∈ ¥𝛿.∀( ¥𝐾:∀𝛼. 𝜏 → ¥𝑇 ′ 𝜏 ′1, . . . , 𝜏
′
𝑚) ∈ ¥𝑅.

( ¥𝑇 = ¥𝑇 ′ ∧ 𝑛 =𝑚
)

¥R =

{
¥𝑅
��� data ¥𝑇 𝛼 where ¥𝑅 ∈ ¥𝛿 ∧ ¥𝑅 ∈ ¥𝑅

}
¥R; ∅ ¥⊢ ¥𝑒 : ¥𝜎

¥⊢ ¥𝛿 ¥𝑒 : ¥𝜎

Fig. 43. 𝜆 ¥EN Program Type Checking

as noted above, where 𝜆 ¥EN uses an MGU relation for unification while System FC relies upon
constraint-kinded types. We therefore state the soundness of 𝜆 ¥EN quite briefly:

Lemma B.20 (𝜆 ¥EN Soundness). Suppose ¥⊢ ¥𝑝 : ¥𝜎 . Then either ¥𝑝 is of the form ¥𝛿 ¥𝑣 or there exists ¥𝑝′
such that ¥𝑝 ¥−→ ¥𝑝′ and ¥⊢ ¥𝑝′ : ¥𝜎 .

Proof. As in the proof of soundness of System FC [Sulzmann et al. 2007]. □

B.2.3. Encoding 𝜆
ẼITS

in 𝜆 ¥EN

While the syntax of 𝜆ITS and 𝜆ẼITS were very similar, their singular difference – lazy vs. eager
substitution – is non-trivial and, in its specific use here, novel. This encoding step is quite the
opposite: the syntax of 𝜆ẼITS and 𝜆 ¥EN are dramatically different, but all of the features of 𝜆ẼITS (except
the encoding of intensional functions themselves) have established encodings into 𝜆 ¥EN. We discuss
those encodings here and provide an incremental, prosaic definition of our encoding approach.
We denote the encoding of expressions from 𝜆ẼITS to 𝜆 ¥EN as ⟦𝑒⟧N, overloading this notation to
encode programs, etc. For readability, we elide the quanitifiers in 𝜆 ¥EN constructor declarations
which quantify no type variables.

Booleans and lists are encoded quite directly using the GADTs of 𝜆 ¥EN. An encoded 𝜆ẼITS program
will always contain the following type declarations:

1 data Boolean where
2 True : Boolean
3 False : Boolean
4 data List a where
5 Nil : ∀ a. List a
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6 Cons : ∀ a. a, (List a) -> List a

Operations such as if and nil? are translated to case expressions accordingly.
Program points are similarly encoded using a type declaration based upon a whole-program

analysis of the unique ℓ values appearing in the 𝜆ẼITS program. Each encoded 𝜆ẼITS program contains
a type declaration of the form

1 data Ppt where
2 Ppt1 : Ppt
3 . . .

4 Ppt𝑛 : Ppt

where each constructor corresponds to a unique ℓ value. As the set of ℓ values in an 𝜆ẼITS program
is monotonically decreasing throughout evaluation, such a Ppt data type can be constructed
on a per-program basis. Program point equality == is encoded via (rather verbose) nested case
expressions.

Typeclasses and type constraints are encoded by representing them as GADTs which witness
typeclass instances and arguments expecting those witnesses, respectively. 𝜆ẼITS has a Haskell-
like notion of typeclasses [Hall et al. 1996], the instances of which we encode as GADT values
[Pottier and Gauthier 2006b] carrying their method implementations as arguments. For instance,
consider the Eq typeclass from Section 5.5. This typeclass in an 𝜆ẼITS program is encoded as a GADT
declaration in 𝜆 ¥EN:

1 data Eq a where
2 Eq : ∀a. (a -> a -> Boolean) -> Eq a

Each instance of this typeclass is then encoded as a construction of this GADT. Here, we use the
extended namespace of variables in 𝜆 ¥EN, ensuring that each variable of the form ⟨𝐹, ¥𝜏⟩ contains an
instance of the corresponding GADT. In the case of the instance Eq ppt, for instance, we would
include the following binding in the body expression of the program:

1 let ⟨Eq, Ppt⟩ = Eq Ppt (
�
𝜆
Eq
ℓ,[]p:ppt. . . .

�
N
) in . . .

As constraints are now represented as values in 𝜆 ¥EN, constrained polymorphic functions are
encoded as unconstrained polymorphic functions which take such values as arguments (in the same
style as previous work in Haskell [Hall et al. 1996]). For instance, the 𝜆ẼITS function Λ𝛼. {Eq 𝛼} ⇒ 𝑒

is encoded in 𝜆 ¥EN as Λ𝛼. 𝜆⟨Eq, 𝛼⟩:Eq 𝛼.𝑒 . Type applications are encoded to explicitly pass the
appropriate argument of the form ⟨𝐹, ¥𝜏⟩ for each constraint. Notably, this requires the encoding to
know the constraints associated with a type function at its call site; thus, this step of the encoding
requires the program to be well-typed and so this encoding is only defined for well-typed programs.
The ordering of these arguments is irrelevant as long as the encoding process uses a consistent
ordering on constraints.
Runtime type representatives are encoded via a single GADT declaration using a similar

whole-program transformation and with knowledge of the 𝜆ẼITS grammar [Baars and Swierstra 2002;
Xi et al. 2003]. The type grammar contains a fixed set of forms parameterized over the constraint
functions used throughout the program; for any program, the set of all used 𝐹 is finite and such 𝐹
are used only in a first-order fashion. So an encoded 𝜆ẼITS program includes type declarations of
the form

1 data TyRep a where
2 TyBool : TyRep Boolean
3 TyPpt : TyRep Ppt
4 TyList : ∀ a. (TyRep a) -> TyRep (List a)
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5 TyIntensionalFunctionEq : ∀ a b. (TyRep a), (TypeRep b)
6 -> TyRep (IntensionalFunctionEq a b)
7 TyClosureItemEq : TyRep ClosureItemEq
8 . . .

where distinct intensional function and closure item constructors appear for each 𝐹 . (Note that
ClosureItemEq and IntensionalFunctionEq are discussed below. GADT types in 𝜆 ¥EN aremutually
defined.) 𝜆ẼITS typecase (~) expressions are encoded as case expressions. As the type argument to
each TyRep constructor carries the encoding of the type it represents, the type variable substitutions
which occur in 𝜆ẼITS typecase expressions are exactly matched by the type variable substitutions
incurred by a GADT case branch (formalized below).

Closure items are encoded using the above tools. Each closure item retains the type of the value
it contains as well as evidence that this value conforms to its constraint. Encoded in 𝜆 ¥EN, this simply
requires a type representative and a typeclass instance. For simplicity, we encode each closure item
in a typeclass-specific container akin to the following:

1 data ClosureItemEq where
2 ClosureItemEq : ∀ a. a, (TyRep a), (Eq a) -> ClosureItemEq

Note that the type variable a here is not exposed in the type of ClosureItemEq; in GADTs, this
encodes an existential type [Peyton Jones et al. 2006; Sulzmann et al. 2007; Xi et al. 2003]. This allows
multiple ClosureItemEq values containing different types to coexist in e.g. a list representing an
intensional function’s closure.
Intensional functions are, in comparison to the above, encoded in a rather underwhelming

way: they are merely triples containing their behavior (as an extensional function), program point,
and closure. Again for simplicity, we create one data type for each declared typeclass. The following,
for instance, is the encoding of Eq:

1 data IntensionalFunctionEq a b where
2 IntensionalFunctionEq : ∀a b. (a -> b), Ppt, (List ClosureItemEq)
3 -> IntensionalFunctionEq a b

Note that, as all expressions are constraint-monomorphic in 𝜆ẼITS (and 𝜆ITS), it is trivial to select
the appropriate data type to encode a particular intensional function.

The expressions identify and inspect are encoded by projecting the appropriate element from
this data type. Function application is encoded by projecting the first element from this data type
and then applying the appropriate argument to the result.

B.2.4. Relating 𝜆
ẼITS

and 𝜆 ¥EN

We now consider a variety of properties of the encoding function ⟦·⟧N from 𝜆ẼITS into 𝜆 ¥EN. We will
rely upon these properties to prove the soundness of 𝜆ẼITS in terms of Lemma B.20. We begin by
observing that the evaluation of a 𝜆ẼITS program always leads to a corresponding evaluation in 𝜆 ¥EN.
The 𝜆 ¥EN evaluation may require multiple steps in some cases; for instance, the application of an
intensional function in 𝜆ẼITS requires in 𝜆 ¥EN both the projection of the corresponding extensional
function from its container as well as the application of that extensional function. In most cases,
however, evaluation is one-to-one between the systems.
Lemma B.21. If 𝑝 ˜−→ 𝑝′ then ⟦𝑝⟧N ¥−→+ ⟦𝑝′⟧N.

Proof. By induction on the body expression of 𝑝 and case analysis on the operational semantics
rule used. The definition of ⟦·⟧N relates the 𝑐 and 𝑑 in 𝑝 with the ¥𝛿 in ⟦𝑝⟧N. The ¥−→+ relation is
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necessary as 𝜆ẼITS application requires two small steps when encoded: a projection from the GADT
representing the intensional followed by an extensional application. □

We also require a similar alignment between the type systems of 𝜆ẼITS and 𝜆 ¥EN. This property is
relatively immediate given the definition of ⟦·⟧N.
Lemma B.22. ⊢̃ 𝑝 : 𝜎 iff ¥⊢ ⟦𝑝⟧N : ⟦𝜎⟧N.

Proof. By induction on the body expression of 𝑝 and case analysis on the type rule used. □

A somewhat more unusual property of evaluation we require is that, if any encoded program
steps in 𝜆 ¥EN, then it will always step to another encoded program eventually. This is enforced by
the structures produced during encoding: a stuck application in 𝜆ẼITS, for instance, will encode
to a stuck case expression in 𝜆 ¥EN. Put another way: while some ill-typed 𝜆 ¥EN programs get stuck
in states which are not valid encodings of 𝜆ẼITS programs, the range of ⟦·⟧N contains no such 𝜆 ¥EN
programs.
Lemma B.23. If ⟦𝑝⟧N ¥−→ ¥𝑝 then ⟦𝑝⟧N ¥−→+ ⟦𝑝′⟧N for some 𝑝′.

Proof. By induction on 𝑝 and case analysis on the operational semantics rule used. In most
cases, ¥𝑝 = ⟦𝑝′⟧N for some 𝑝 . For intensional application, we demonstrate that ⟦𝑝⟧N steps to ⟦𝑝′⟧N
after two steps, as described above. □

Finally, we require a near dual of Lemma B.21 above: if the encoding of an 𝜆ẼITS program in
𝜆 ¥EN steps to another encoded 𝜆ẼITS program, then the 𝜆ẼITS operational semantics also allows this
transition. Note in this lemma statement that the 𝜆ẼITS operational semantics may take many steps;
we do not restrict this claim to the next 𝜆ẼITS program but rather observe that this is true for all
programs that the encoding can reach. As with the previous lemma, it is subtly important that we
are limited to 𝜆 ¥EN programs in the range of ⟦·⟧N.
Lemma B.24. If ⟦𝑝⟧N ¥−→+ ⟦𝑝′⟧N then 𝑝 ˜−→+ 𝑝′.

Proof. By induction on 𝑝 and case analysis on the operational semantics rule used. We rely
heavily upon the definition of ⟦·⟧N to constrain the 𝜆 ¥EN programs through which we step to ensure
that the ˜−→+ relation holds. □

B.3 Type Soundness of 𝜆ITS
We finally assemble the above lemmas into a statement of sondness of 𝜆ITS. We begin by proving
the soundness of 𝜆ẼITS, which we demonstrate in terms of its encoding into 𝜆 ¥EN.

Lemma B.25 (𝜆ẼITS Soundness). Suppose ⊢̃ 𝑝 : 𝜎 . Then either 𝑝 is of form 𝑐 𝑑 𝑣 or there exists some
𝑝′ such that 𝑝 ˜−→ 𝑝′ and ⊢̃ 𝑝′ : 𝜎 .

Proof. 𝑝 is either of form 𝑐 𝑑 𝑣 or it is not. If it is, then we are finished. Otherwise, it remains to
show that there exists some 𝑝′ such that 𝑝 ˜−→ 𝑝′.
By Lemma B.22, we have ¥⊢ ⟦𝑝⟧N : ⟦𝜎⟧N. By 𝜆 ¥EN soundness in Lemma B.20, this means that

⟦𝑝⟧N ¥−→ ¥𝑝 for some ¥𝑝 . By Lemma B.23, we have ⟦𝑝⟧N ¥−→+ ⟦𝑝′′⟧N for some 𝑝′′. By Lemma B.24
we have 𝑝 ˜−→+ 𝑝′′ which, by Definition B.3 implies 𝑝 ˜−→ 𝑝′ for some 𝑝′. It remains to show that
⊢̃ 𝑝′ : 𝜎 .

Because 𝑝 ˜−→ 𝑝′ we have by Lemma B.21 that ⟦𝑝⟧N ¥−→+ ⟦𝑝′⟧N. By induction on the length of
this evaluation sequence, Lemma B.20 gives us that ¥⊢ ⟦𝑝′⟧N : ⟦𝜎⟧N. Lemma B.22 then gives us that
⊢̃ 𝑝′ : 𝜎 and we are finished. □
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With the soundness of 𝜆ẼITS in hand, we can now prove the soundness of 𝜆ITS. This is proof
follows a similar pattern but relies upon the surjectiveness of ⟦·⟧E rather than the more elaborate
properties proven for ⟦·⟧N above.
Theorem 2 (Soundness). Suppose ⊢ 𝑝 : 𝜎 . Then either 𝑝 is of form 𝑐 𝑑 𝑣 or there exists some 𝑝′
such that 𝑝 −→ 𝑝′ and ⊢ 𝑝′ : 𝜎 .

Proof. Either 𝑝 is of the form 𝑐 𝑑 𝑣 or it is not. If it is, then we are finished. Otherwise, it remains
to show that there exists some 𝑝′ such that 𝑝 −→ 𝑝′ and ⊢ 𝑝′ : 𝜎 .
Because 𝑝 is not of the form 𝑐 𝑑 𝑣 , Definition B.4 gives that ⟦𝑝⟧E is not of the form 𝑐 𝑑 𝑣 . By

Lemma B.14 and because ⊢ 𝑝 : 𝜎 we have ⊢̃ ⟦𝑝⟧E : 𝜎 . Thus by Lemma B.25 we have for some 𝑝′
that ⟦𝑝⟧E ˜−→ 𝑝′ and ⊢̃ 𝑝′ : 𝜎 .

By Lemma B.5, ⟦·⟧E is surjective; thus, for some 𝑝′′, we have ⟦𝑝′′⟧E = 𝑝′ and so ⟦𝑝⟧E ˜−→ ⟦𝑝′′⟧E.
By Lemma B.9, there exists some 𝑝′ such that 𝑝 −→ 𝑝′ and ⟦𝑝′⟧E = ⟦𝑝′′⟧E. Thus, from ⊢̃ ⟦𝑝′′⟧E : 𝜎
we have ⊢̃ ⟦𝑝′⟧E : 𝜎 and, by Lemma B.14, we have ⊢ 𝑝′ : 𝜎 . Since 𝑝 −→ 𝑝′ and ⊢ 𝑝′ : 𝜎 , we are
finished. □
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