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Abstract— Robust robotic manipulation and perception re-
mains a difficult challenge, in particular in unstructured en-
vironments. To address this challenge, we propose to couple
manipulation and perception. The robot observes its own
deliberate interactions with the world. These interactions reveal
sensory information that would otherwise remain hidden and
also facilitate the interpretation of perceptual data. To demon-
strate the effectiveness of interactive perception we present a skill
for the manipulation of an articulated object. Using this skill, we
show how UMan, our mobile manipulation platform, obtains a
kinematic model of an unknown object. The model then enables
the robot to perform purposeful manipulation of that object.
Our algorithm is extremely robust, and does not require prior
knowledge of the object; it is insensitive to lighting, texture,
color, specularities, and is computationally highly efficient.

I. INTRODUCTION

Already today mobile robots play an important role in
applications ranging from planetary exploration to house-
hold robotics. Endowing these robots with significant manip-
ulation capabilities could extend their use to many additional
applications, including elder care, house-hold assistance,
cooperative manufacturing, and supply chain logistics. But
achieving the required level of competency in manipulation
and perception has proven difficult. The dynamic and un-
structured environments associated with those applications
cannot be easily modeled or controlled. As a result, many
existing perceptual and manipulation skills are too brittle to
provide adequate manipulation capabilities.

We develop adequate capabilities for perception and ma-
nipulation in unstructured environments by closely coupling
the perceptual process with the interactions of manipulation.
The robot manipulates the environment specifically to assist
the perceptual process. Perception, in turn, provides infor-
mation necessary to manipulate successfully. The robot is
watching itself manipulating the environment and interprets
the sensor stream in the context of this deliberate interaction.

Coupling perception and manipulation has two main ad-
vantages: First, perception can be directed at those aspects of
the sensor stream that are relevant in the context of a specific
manipulation task. Second, physical interactions can reveal
properties of the environment that would otherwise remain
hidden to sensors. For example, by interacting with objects,
their kinematic and dynamic properties become perceivable.

The proposed coupling of perception and manipulation
naturally extends the concept of active vision [1], [2]. Active
vision allows an observer to change its vantage point so as
to obtain information most relevant to a specific task [6].

Fig. 1. The mobile manipulator UMan interacts with a tool, extracting the
tool’s kinematic model to enable purposeful manipulation. The right image
shows the scene as seen by the robot through an overhead camera; dots
mark tracked visual features.

The work presented in this paper goes one step further: it
allows the observer to manipulate the environment to obtain
task-relevant information. Due to this coupling of perception
and physical interaction, we refer to the general approach as
interactive perception.

In interactive perception, the emphasis of perception shifts
from object appearance to object function and the relation-
ship between cause and effect. Irrespective of the color,
texture, and shape of an object, a robot has to determine
if this object is suited to accomplish a given task. Inter-
active perception thus represents a shift from the dominant
paradigm in computer vision and manipulation. This shift
is necessary to enable the robust execution of manipulation
tasks in unstructured environments. Interestingly, there is
evidence from psychology that humans use the functional
affordances of an object for its categorization [3], [8].

In this paper, we develop interactive perception skills for
the manipulation of unknown objects that possess inherent
degrees of freedom (see Figure 1). This category of objects
includes many tools, such as scissors, pliers, but also door
handles, drawers, etc. To manipulate articulated objects suc-
cessfully without an a priori model, the robot has to be
able to acquire a model of the object’s kinematic structure.
The robot then has to be able to leverage this model for
purposeful manipulation.

We demonstrate that interactive perception enables highly
effective and robust manipulation of arbitrary, planar kine-
matic chains. Our main contribution is the interactive percep-
tion algorithm to extract kinematic models. This algorithm
works reliably, does not require prior knowledge of the
object, is insensitive to lighting, texture, color, specularities,
and is computationally highly efficient. It is thus ideally



suited as a perception and manipulation skill for unstructured
environments.

II. RELATED WORK

Interactive perception is related to an extensive body of
work in robotics and computer vision; it is impossible to
provide an inclusive review of that work. Instead, we will
first differentiate interactive perception from entire areas of
related work: feedback control, perception, and manipulation.
We then discuss related research efforts that also leverage the
concept of interactive perception.

Interactive perception is not feedback control. A controller
affects a variable measured by a sensor to achieve a reference
value. Instead, interactive perception affects the environment
to enrich and disambiguate the sensor stream. The same
argument differentiates interactive perception from visual
servoing [14].

Interactive perception simplifies the perception problem
by taking into account task constraints and by enriching the
sensor stream through deliberate interaction with the environ-
ment. In contrast, most research in computer vision attempts
to solve an unconstrained, passive perception problem from
image data alone [12]. This is generally accomplished by
either interpreting primitive image features, e.g. edges or
corners, or by learning those features from many exam-
ples [4], [17], [26], [31]. Most of these methods cannot be
directly employed for manipulation. Moreover, tasks such as
extracting a kinematic model from images of a static object,
are impossible to accomplish using these methods.

Interactive perception includes the acquisition of environ-
mental models during manipulation. This stands in contrast
with most research in manipulation [21], which addresses
model acquisition in three different ways. The largest body
of prior work assumes that accurate models are provided as
part of the input [5], [20], [24], [27], [30]. This is not a viable
option in unstructured environments. A second solution is
teleoperation [10]. Here, the operator provides the cognitive
capabilities to solve the model acquisition task. This solution
is not feasible in autonomous manipulation. Lastly, some
manipulation work explicitly includes model acquisition as
part of manipulation [16], [25]. However, this work separates
model acquisition from the manipulation itself and performs
them sequentially. In this approach, the perceptual compo-
nent is an independent component, therefore subject to the
limitations discussed above.

Other prior work combines perception with deliberate
physical actions [7], [13], [18], [28], [29]. To the best of our
knowledge, there are only two examples of interactive per-
ception in the literature. Christiansen, Mason, and Mitchell
determine a model of an object’s dynamics by observing its
motion in response to deliberate interactions [9]. Fitzpatrick
and Metta [11], [23] visually segment objects in the scene
by pushing them. This research has motivated the work
presented in this paper.

III. OBTAINING KINEMATIC MODELS THROUGH
INTERACTION

Successful manipulation of articulated objects must be
informed by knowledge of the object’s kinematics. Such
knowledge cannot be obtained from visual inspection alone
and would be extremely difficult to determine by manip-
ulation. However, when perception and manipulation are
combined, the robot can generate visual stimuli that reveal
this kinematic structure.

A. Obtaining Feature Trajectories

To extract the kinematic model of an object in the scene,
we observe its motion caused by the robot’s interaction.
We identify the motion that occurs in the scene during this
interaction by tracking point features in the entire scene.
The resulting feature trajectories capture the movements of
objects in the scene and allow us to infer a kinematic model
of the scene.

We make no specific assumptions about the objects or the
background. We simply use OpenCV’s implementation [15]
of optical flow-based tracking [19] to track the motion of
f most distinctive features in the scene (in our experiments
f = 500). Our algorithm requires that at least a few features
are tracked on all rigid bodies throughout the interaction.
As long as this requirement is satisfied, our algorithm is
insensitive to lighting conditions, shadows, the texture and
color of the object, and specularities. This requirement is
very weak, since a scene without features does not provide
substantial visual information.

Simple feature tracking in unstructured scenes is highly
inaccurate. Features move relative to objects in the scene,
disappear, or jump to other parts of the image. We will
explain how our method of extracting kinematic models is
inherently robust to this type of noise.

B. Identifying Rigid Bodies

The key insight behind our algorithm is that the relative
distance between two points on a rigid body does not change
as the body is pushed. However, the distance between points
on different rigid bodies does change as the bodies rotate and
translate relative to each other (see Figure 2). Consequently,
interacting with an object while observing changes in relative
distance between points on the object will uncover clusters of
points, where each cluster represents a different rigid body.

p1

p2

p3

q2

q1

q3

s1
s2 s3

r1
r2

r3

Fig. 2. Planar degrees of freedom: revolute (left) and prismatic (right).
Points pi, qi, ri, si on each rigid link do not change relative distances.



The first step of our algorithm serves to identify all
rigid bodies observed in the scene. To achieve this, we
build a graph G(V,E) from the feature trajectories obtained
throughout the interaction. Every vertex v ∈ V in the graph
represents a tracked image feature. An edge e ∈ E connects
vertices (vi, vj) if and only if the distance between the
corresponding features remains smaller than some threshold
throughout the observed interaction. Features on the same
rigid body are expected to maintain approximately constant
distance between them. In the resulting graph, all features
on a single rigid body form a highly connected sub-graph.
Identifying the highly connected sub-graphs is analogous to
identifying the object’s different rigid bodies.

In order to separate the graph into highly connected
sub-graphs we use the min-cut algorithm, which separates
a graph into two sub-graphs by removing as few edges
as possible. Min-cut can be invoked recursively to handle
graphs with more than two highly connected sub-graphs.
The recursion terminates when breaking a graph into two
sub-graphs requires removing more than half of its edges.

Our min-cut algorithm has worst case complexity of
O(nm), where n represents the number of nodes in the graph
and m represents the number of clusters [22]. Most objects
possess only few joints, making m � n. We can therefore
conclude that for practical purposes clustering is linear in the
number of tracked features.

This procedure of identifying rigid bodies is robust to the
noise present in the feature trajectories. Unreliable features
randomly change their relative distance to other features.
This behavior places such features in small clusters, most
often of size one. In our algorithm, we discard connected
components with three of fewer features. The remaining
connected components consist of features that were tracked
reliably throughout the entire interaction. Each of these
components corresponds to either the background or to a
rigid body in the scene.

C. Identifying Joints

Two rigid bodies can be connected by either a revolute or
a prismatic joint. Observing the relative motion that two rigid
bodies undergo while interacting with them reveals the type
of joint that connects them. Two bodies that are connected
by a revolute joint share an axis of rotation. Two bodies that
are connected by a prismatic joint can only translate with
respect to one another. We examine all pairs of rigid bodies
identified in the previous step of our algorithm to identify by
which of the two joint types they are connected. If two rigid
bodies experience relative motion that cannot be explained by
either joint type, we infer that the bodies are not connected
and belong to different articulated objects. This for example,
is the case of the background, which we regard as another
object.

For an object composed of k rigid bodies, there are
(
k
2

)
pairs to analyze. In practice k is very small, as most objects
possess only few joints.

To find revolute joints, we exploit the information captured
in the graph G. Vertices that belong to two different con-

nected components must have maintained constant distance
to two distinct clusters. This property holds for features on
or near revolute joints connecting two or more rigid bodies.
To find all revolute joints present in the scene, we search
the entire graph for vertices that belong to two clusters (see
Figure 3).

Fig. 3. Graph for an object with two revolute degrees of freedom. Highly-
connected components (shades of gray) represent the links. Vertices of the
graph that are part of two components represent revolute joints (white).

To determine if two rigid bodies are connected by a pris-
matic joint, we exploit distance information for features on
those bodies from two different time instances. For every pair
of bodies we examine the feature trajectories to determine
when the two bodies experience their maximum relative
displacement. Those instances will provide the strongest
evidence and result in maximum robustness. We denote the
corresponding positions of the two bodies by A, B and
by A′, B′ at the beginning and the end of the motion,
respectively (see Figure 4(a)). If the two bodies are connected
by a prismatic joint, they may have rotated and translated
together, as well as translated with respect to each other.

To confirm the presence of a prismatic joint, we compute
the transformation T that maps features from A to A′:
A′ = T · A . We then apply the same transformation to the
second body to get its expected position, B̂, at the second
position (see Figure 4(b)). If B̂ = B′ we have no evidence
for a prismatic joint and in fact A and B at this point
appear to be the same rigid body. If B̂ is different than
the observed position of B′, and the displacement between
B′ and B̂ is a pure translation, we conclude that the two
bodies are connected by a prismatic joint. If neither prismatic
nor revolute joint was detected, the two bodies must be
disconnected.

After all pairs of rigid bodies represented in the graph
have been considered, our algorithm has categorized their
observed relative motions into prismatic joints and revolute
joints, or it has determined that two bodies are not connected.
The background, for example, always falls into the latter
category. Using this information we build a kinematic model
of the object using Denavit-Hartenberg parameters.

It is possible that two objects coincidentally perform a
relative motion that would be indicative of a prismatic or
revolute joint between them. Our algorithm would detect
a joint between those bodies, as it has no evidence to the
contrary. However, additional interactions with the objects
will eventually provide evidence for removing such joints.

Note that this algorithm makes no assumptions about
the kinematic structure of objects in the scene. It simply
examines the relative motion of pairs of bodies. As a result,
the algorithm naturally applies to planar serial chains as
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Fig. 4. Identification of prismatic joints: Based on the transformation
between A and A′, we anticipate B’s new position B̂. The translation
between B′ and B̂ can be explained by a prismatic joint.

well as to planar branching mechanisms. Furthermore, our
algorithm does not make any assumptions about the number
of articulated or rigid bodies in the scene. As long as a
sufficient number of features are tracked and as long as
the interaction has resulted in evidence of the kinematic
structure, our algorithm will identify the correct kinematic
model for all objects.

D. Manipulating Articulated Bodies

Once the kinematic structure of an articulated body has
been identified, manipulation planning becomes a trivial task.
We define the manipulation task as moving the articulated
body to a particular configuration q. Based on the kinematic
model, we can determine the displacements of the joints
required to achieve this configuration. During the interaction,
we can track and update the kinematic model until the
desired configuration is attained.

IV. EXPERIMENTAL RESULTS

We validate the proposed method in real-world experi-
ments. In those experiments, a robot interacts with various
articulated objects to extract their kinematic structure. The
resulting kinematic model is then used to perform purposeful
manipulation.

The experiments were conducted with our robotic platform
for autonomous mobile manipulation, called UMan (see
Figure 5). UMan consists of a holonomic mobile base with
three degrees of freedom, a seven degree-of-freedom Whole
Arm Manipulator (WAM) by Barrett Technologies, and a
three-fingered Barrett hand. The robot interacts with and
manipulates articulated objects placed on a table in front
of it (see Figure 1). The tabletop has a wood-like texture. In
some of our experiments, we placed a white poster board on
top of the table to provide a plain background. (We later

determined that this has no effect.) An overhead off-the-
shelf web camera with a resolution of 640 by 480 pixels
provides a video stream of the scene. Note that the camera
could have also been mounted directly on the robot, as
long as it provides a good, roughly downwards view of the
table. The camera mount is uncalibrated, but we ensure that
the table was within the field of view. Experiments were
performed right next to a window, thus lighting conditions
vary significantly throughout our experiments.

UMan was tasked with extracting kinematic models of five
objects: scissors, shears, pliers, a stapler, and a wooden toy,
shown in Figures 6 and 7. The first four objects have a single
degree of freedom (revolute joint). The wooden toy has three
degrees of freedom (two revolute joints and one prismatic
joint). The first four objects are off-the-shelf products and
have not been modified for our experiments. They vary in
scale, shape, color, and texture. For example, the scissors
are much smaller than the shears, have different handles and
different colors. The pliers have very long handles compared
to the size of their teeth. And finally, the stapler’s links do not
extend to both sides of the joint, unlike the other three tools.
The wooden toy was custom-made to have texture similar to
that of the table, to test identification of prismatic joints, and
to experiment with more complex kinematic chains.

In our experiments we tracked the 500 most distinctive
features in the scene. During the interaction, which was
performed using a pre-recorded motion, about half of these
features are lost. Among the remaining ones, about half
are very noisy and unreliable; they are discarded by our
algorithm. Many of the lost and noisy features can be
explained by the motion of the manipulator during the
interaction. Shadows also result in unreliable features. Lost
features are discarded before the graph representation is
being constructed. Noisy features are automatically discarded
by our method, as explained above.

Figure 6 shows the results of interacting with the objects
that possess one revolute joint (scissors, shears, pliers, and
stapler). The objects were placed on top of the white poster
board. Experiments were repeated at least 30 times. In each
experiment the objects were placed in different initial poses.
In every single one of the experiments, we were able to
identify the accurate kinematic structure of the object. The
positions of the joints were detected with accuracy (revolute
joints are marked by green dots).

The extracted kinematic model was then used to plan
and execute purposeful interactions with the object. To
demonstrate that, we tasked UMan with forming a 90◦ angle
between the links of the four objects. This task simulates
tool use, since using any of the four objects would require
to achieve or alternate between specific configurations. The
bottom two rows of Figure 6 show the results of executing a
manipulation plan based on the detected kinematic structure
for the four objects. In all of our experiments the results
were very accurate, indicating that the extracted models can
be applied for tool use.

Figure 7 shows the results of interacting with the wooden
toy. The toy was placed on top of the table. In this exper-



iment the texture of the background and the object were
very similar. As a result, tracked features were distributed
across the entire image. Also for this object we repeated
experiments at least 30 times. In each experiment, the
object was placed in a different initial pose. In all of our
experiments, our algorithm identified the correct kinematic
structure of the object, consisting of two revolute joints and
one prismatic joint. The object was correctly separated from
the background and no erroneous joints were detected. The
positions of the joints were detected with accuracy (joints
are marked by a green line and green dots).

During the experiments, our algorithm identified two
objects. The first corresponds to the wooden toy and is
composed of four links and three joints. The second is
composed of one link and no joints; it corresponds to the
background. This experiment required several interactions to
generate perceptual evidence for each of the joints.

Fig. 5. UMan (UMass Mobile Manipulator)

In all of our experiments, the proposed algorithm was
able to extract the kinematic model of the object with high
accuracy. This robustness is achieved using a low-quality,
low-resolution web camera. Small displacement of the object
suffice for reliable joint detection. The algorithm does not re-
quire parameter tuning. The experiments were performed un-
der uncontrolled lighting conditions, using different camera
positions and orientations (for some experiments, the camera
position and orientation varied throughout the interaction),
and for different initial poses of the object. Our algorithm
accurately recovered the kinematic structure of the object in
every single one of our experiments.

The robustness and effectiveness of the proposed algo-
rithm provides strong evidence that interactive perception
can serve as a framework for manipulation and perception in
unstructured environments. By combining very fundamental
capabilities from perception and manipulation, we were able
to create a robust skill that could not have been achieved by
manipulation or vision alone. We are currently investigating
additional applications of interactive perception, including
object segmentation, object tracking, and grasping.

Fig. 6. Experimental results showing the manipulation of articulated objects
based on interactive perception. The first row shows the scissors before
the interaction (left) and after the interaction (right). The top right image
also illustrates the generated manipulation plan for forming a 90◦ angle
between the blades. The second and third row show the detected revolute
joints (marked with a green dot), and the results of executing the respective
manipulation plans for forming a 90◦ angle between the objects’ links.

V. CONCLUSION

The deployment of robots with manipulation capabilities
remains a substantial challenge, in particular in dynamic
and unstructured environments. In such environments, robots
cannot rely on accurate a priori models and are generally
unable to acquire such models with high accuracy. As a
result, the reliance on such models renders manipulation and
perception skills brittle and unreliable in these environments,
even if they work well under highly controlled conditions.

We demonstrate that it is possible to achieve robustness in
perception and manipulation, even in unstructured environ-
ments, when perception and manipulation are coupled in a
task-specific manner. By watching its own deliberate inter-
action with the world, a robot is able to improve perception
by revealing information about the environment that would
otherwise remain hidden. Such information includes, for
example, the kinematic and dynamic properties of objects.
Coupling manipulation and perception also enables the robot
to interpret its sensor stream taking into account the specific
task and the known, deliberate interaction. This significantly
improves the robustness of perception, as the task and the
interaction constrain the space of consistent interpretations
of the perceptual data. We refer to this approach of coupling
perception and manipulation as interactive perception.

In this paper, we describe an interactive perceptual al-
gorithm to extract planar kinematic models from unknown
objects by purposeful interaction. The robot pushes on an



Fig. 7. Experimental results showing the extraction of the kinematic properties of a wooden toy using interactive perception. The left image shows the
object in its initial pose. The middle image shows the object after the interaction. The detected clusters corresponding to rigid bodies are displayed. The
right image shows the detected kinematic structure (green line marks the prismatic joint, green dots mark the revolute joints).

object in its field of view while observing the object’s
motion. From this observation, the robot can compute the
object’s kinematic model. This model is then used to perform
purposeful manipulation, i.e. to achieve a specific config-
uration of the object. The algorithm for the extraction of
kinematic models does not require prior knowledge of the
object, is insensitive to lighting, texture, color, specularities,
and is computationally highly efficient. It is thus ideally
suited as a perception and manipulation skill for unstructured
environments.
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