
CS31: Introduction to
Computer Systems

Dr. Sukrit Venkatagiri
Swarthmore College

Dive into Systems by Matthews, Newhall, and Webb Stable Diffusion

Week 5, Class 2
Pointers and Memory

02/21/24

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

Overview

• How to reference the location of a variable in memory

• How to make this information useful
• Allocating memory
• Calling functions with pointer arguments

• Where variables are placed in memory

Pointers

• Pointer: A variable that stores a
reference to (the address of) a
memory location

• Pointer: sequence of bits that
should be interpreted as an
index into memory

• Where have we seen this
before?

• A pointer is like a mailing
address, it tells you where a
variable is located in memory

Recall: Arrays
int january_temps[31]; // Daily high temps

• Array variable name means, to the compiler, the
beginning of the memory chunk (address)

“january_temps”
Location of [0] in
memory. [0] [1] [2] [3] [4] [29][30]

…
Array bucket indices.

0x…FF1 0x…FF5 0x…FF9

Recall: Program Counter

Program Counter (PC): Memory address of next instr
0:
1:
2:
3:
4:
…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

X86_64 refers to
the PC as %rip

Instruction
Pointer

A
L
U

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

0x0:
0x8:

0x10:
0x18:

…
0x1A60
0x1A68 42
0x1A70
0x1A78

…
0xFFFFFFFF:

Recall: Addressing Mode: Memory

movl (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx

2. Copy value at that
address to rax

Pointers in C
• Like any other variable, must be declared: type *name;

• Example:
• int *myptr;
• This is a promise to the compiler:

“This variable holds a memory address and if you follow what it
points to in memory (dereference it), you’ll find an integer”

• A note on syntax:
• int* myptr; int * myptr; int *myptr;
• These all do the same thing (note the * position)

Dereferencing a Pointer

• To follow the pointer, we dereference it

• Dereferencing re-uses the * symbol

• If iptr is declared as an integer pointer,
*iptr will follow the address it stores to find an integer in memory

Putting a * in front of a variable…

• When you declare the variable: int* a;
• Declares the variable to be a pointer
• Variable stores a memory address

• When you use the variable (“dereference”): printf(“%p”, *p);
• Like putting () around a register name
• Follows the pointer out to memory
• Acts like the specified type (e.g., int, float, etc.)

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong
• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the
changes persist to the caller

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

Why Pointers?

A) B)

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.
• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the changes
persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

Why Pointers?

Static vs. Dynamic

Static
• The compiler can know in

advance

• The size of a C variable (based
on its type)

• E.g., hard-coded constants

Dynamic
• The compiler cannot know --

must be determined at run time

• User input (or things that
depend on it)

• E.g., create an array where the
size is typed in by user (or file)

So we declared a pointer … int * a;

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory dynamically and point to it

The Address Of (&)

• You can create a pointer to anything by taking its address with the
address of operator (&)

The Address Of (&)

int main(void) {
 int x = 7;
 int *iptr = &x;

 return 0;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

7X:

iptr:

So we declared a pointer … int * a;

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory dynamically and point to it

Copying a Pointer

• We can perform assignment on pointers to copy the stored address.

int x = 7;
int *iptr, *iptr2;
iptr = &x;
iptr2 = iptr;

Stack7X:

iptr: iptr2:

Pointer Types

• By default, we can only assign a pointer if the type matches what C
expects

• “Warning: initialization from incompatible pointer type”
(Don’t ignore this message!)

int x = 7;
int *iptr = &x;

int x = 7;
float *fptr = &x;

Recall: Dereferencing a Pointer

• To follow the pointer, we dereference it

• Dereferencing re-uses the * symbol

• If iptr is declared as an integer pointer,
*iptr will follow the address it stores to find an integer in memory

void *

• There exists a special type, void *, which represents a “generic pointer” type
• Can be assigned to any pointer variable
• int *iptr = (void *) &x; // Doesn’t matter what x is

• This is useful for cases when:
1. You want to create a generic “safe value” that you can assign to any pointer variable

2. You want to pass a pointer to / return a pointer from a function, but you don’t know
its type

3. You know better than the compiler that what you’re doing is safe, and you want to
eliminate the warning

NULL: A special pointer value

• You can assign NULL to any pointer, regardless of what type it points
to (it’s a void *)
• int *iptr = NULL;
• float *fptr = NULL;

• NULL is equivalent to pointing at memory address 0x0. This address is
NEVER in a valid segment of your program’s memory.
• This guarantees a segfault if you try to dereference it
• Generally a good ideal to initialize pointers to NULL

So, we declared a pointer… int * a;

• How do we make it point to something?
1. Assign it the address of an existing variable (&)
2. Copy some other pointer (=)
3. Allocate some memory dynamically and point to it (malloc)

Allocating (Heap) Memory

• The standard C library (#include <stdlib.h>) includes functions
for allocating memory:

void *malloc(size_t size)
• Allocate size bytes on the heap and return a pointer to the beginning of the

memory block

void free(void *ptr)
• Release the malloc()-ed block of memory starting at ptr back to the

system

Recall: void *

• void * is a special type that represents “generic pointer”
• Can be assigned to any pointer variable

• This is useful for cases when:
1. You want to create a generic “safe value” that you can assign to any pointer variable
2. You want to pass a pointer to / return a pointer from a function, but you don’t know its

type
3. You know better than the compiler that what you’re doing is safe, and you want to

eliminate the warning

• When malloc() gives you bytes, it doesn’t know or care what you use them
for…

Allocation Size

void *malloc(size_t size)
• Allocate size bytes on the heap and return a pointer to the beginning of the

memory block

• How much memory should we ask for?

• Use C’s sizeof() operator:
 int *iptr = NULL;
 iptr = malloc(sizeof(int));

sizeof()
• Despite the ()’s, it’s an operator, not a function
• Other operators:

• addition / subtraction (+ / -)
• address of (&)
• indirection (*) (dereference a pointer)

• Works on any type to tell you how much memory it needs

• Size value is determined at compile time (static)

Why sizeof() is important
struct student {
 char name[40];
 int age;
 double gpa;
}

struct student *bob = NULL;
bob = malloc(sizeof(struct student));

I don’t ever want to see a number hard-coded in here!

How many bytes is this?
Who cares…
Let the compiler figure that out.

Running out of Memory

• If you’re ever unsure of malloc / free’s behavior:
$ man malloc

• According to the C standard:
“The malloc function returns a pointer to the allocated memory that is suitably
aligned for any kind of variable. On error, this function returns NULL.”

• Further down in the “Notes” section of the manual:
“[On Linux], when malloc returns non-NULL there is no guarantee that memory is
really available. If the system is out of memory, one or more processes will be
killed by the OOM killer.”

Running out of Memory

• If you’re ever unsure of malloc / free’s behavior:
$ man malloc

• According to the C standard:
“The malloc function returns a pointer to the allocated memory that is suitably
aligned for any kind of variable. On error, this function returns NULL.”

• You should check for NULL after every malloc:
struct student *bob = NULL;
bob = malloc(sizeof(struct student));

if (bob == NULL) {
 /* Handle this. Often, print and exit. */
}

How is dynamically
allocated memory stored?

0x0

0xFFFFFFFF

Operating system

Memory

• Behaves like a big array of bytes,
each with an address (bucket #)

• By convention, we divide it into
regions

• The region at the lowest
addresses is usually reserved for
the OS

0x0

0xFFFFFFFF

Operating system

Memory - Text

• After the OS, we store the
program’s code

• Instructions generated by the
compiler

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Memory – (Static) Data

• Next, there’s a fixed-size region
for static data

• This stores static variables that
are known at compile time
• Global variables
• Static (hard-coded) strings

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data

Memory - Stack

• At high addresses, we keep the
stack

• This stores local (automatic)
variables
• The kind we’ve been using in C so far
• e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Memory - Stack
• The stack grows upwards

towards lower addresses
(negative direction)

• Example: Allocating array
 int array[3];

• (Note: this differs from
Python)

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[4]

Code (aka. Text)

Data

Memory - Heap
• The heap stores

dynamically allocated
variables

• When programs explicitly
ask the OS for memory, it
comes from the heap
• malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Memory - Heap
• The heap grows

downwards, towards
higher addresses.

• I know you want to ask a
question…

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Memory - Heap
• “What happens if the

heap and stack collide?”

• This picture is not to
scale – the gap is huge

• The OS works really hard
to prevent this.
• Would likely kill your

program before it could
happen.

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Segmentation Violation

Segmentation Violation

• Each region also known as
a memory segment

• Accessing memory outside
a segment is not allowed

• Can also happen if you try
to access a segment in an
invalid way
• OS not accessible to users
• Text and Data are usually read-only

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Malloc and the Heap
int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Malloc and the Heap
int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Create an integer pointer,
named iptr, on the stack.

Assign it NULL.

iptr:

Malloc and the Heap
int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Allocate space for an integer on
the heap (4 bytes), and return a
pointer to that space.

Assign that pointer to iptr.

iptr:

What value is stored in
that area right now?

Who knows… Garbage.

?

Malloc and the Heap
int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Use the allocated heap space by
dereferencing the pointer.

iptr:

5

Malloc and the Heap
int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Free up the heap memory we used.

iptr:

Malloc and the Heap
int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);
iptr = NULL;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Clean up this pointer, since it’s
no longer valid

iptr:

“Memory Leak”

• Memory that is allocated, and not freed, for which there is no longer
a pointer

• In many languages (Java, Python, …), this memory will be cleaned up
for you
• “Garbage collector” finds unreachable memory blocks, frees them
• (This can be a time consuming feature)
• C does NOT do this for you!

Memory Bookkeeping
• To free a chunk, you MUST call free with the same

pointer that malloc gave you. (or a copy)

• The standard C library keeps track of the chunks that
have been allocated to your program.
• This is called “metadata” – data about your data.

• Wait, where does it store that information?
• It’s not like it can use malloc to get memory…

Metadata
Heap

int *iptr = malloc(8);

Metadata
Heap

First
Byte

… … …

… … … Last
Byte

int *iptr = malloc(8);

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

int *iptr = malloc(8);

• C Library: “Let me record this
allocation’s info here.”
• Size of allocation
• Maybe other info

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

int *iptr = malloc(8);

• For all you know, there could be
another chunk after yours.

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

int *iptr = malloc(8);

• Takeaway: very important that you
stay within the memory chunks
you allocate.

• If you corrupt the metadata, you
will get weird behavior.

Valgrind is your new best friend.

Pointers as Arrays

• “Why did you allocate 8 bytes for an int pointer? Isn’t an int only 4
bytes?”
• int *iptr = malloc(8);

• Recall: an array variable acts like a pointer to a block of memory. The
number in [] is an offset from bucket 0, the first bucket.

• We can treat pointers in the same way!

Heap

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

The C compiler knows how big an integer is.

As an alternative way of dereferencing, you can
use []’s like an array.

The C compiler will jump ahead the right
number of bytes, based on the type.

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

Pointers as Arrays

• This is one of the most common ways you’ll use pointers:
• You need to dynamically allocate space for a collection of things (ints, structs,

whatever)
• You don’t know how many at compile time

float *student_gpas = NULL;
student_gpas = malloc(n_students * sizeof(int));
…
student_gpas[0] = …;
student_gpas[1] = …;

Pointer Arithmetic

• Addition and subtraction work on pointers

• C automatically increments by the size of the type that’s pointed to

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

int *iptr2 = iptr + 3;

Skip ahead by 3 times the size of iptr’s
type (integer, size: 4 bytes).

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong
• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the changes
persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

Function Arguments

• Arguments are passed by value
• The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

func:
a:

b:

4

7

4

7

4

7

Function Arguments

• Arguments are passed by value
• The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

4

7

It doesn’t matter what func
does with a and b. The value
of x in main doesn’t change.

Pass by Pointer

• Want a function to modify a value on the caller’s stack? Pass a pointer!

• The called function can modify the memory location it points to.
• passing the address of an argument to function:
• pointer parameter holds the address of its argument
• dereference parameter to modify argument’s value

• You’ve already used functions like this:
• readfile library functions and scanf
• pass address of (&) argument to these functions

Function Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Stack

main:

Pointer Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Stack

main:

x: 4

Pointer Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Stack

main:

func:
a:

x: 4

Pointer Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Stack

main:

func:
a:

x: 9

Dereference
pointer, set value
that a points to.

Pointer Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Stack

main:

x: 9

Prints: 9

Haven’t we seen this
somewhere before?

Readfile Library

• We saw this in lab 1 with read_int, read_float.
• This is why you needed an &.
• e.g.,

int value;
status_code = read_int(&value);

• You’re asking read_int to modify a parameter, so you give it a pointer
to that parameter.
• read_int will dereference it and set it.

Pass by Pointer - Example

int main(void){
 int x, y;
 x = 10; y = 20;
 foo(&x, y);
 …
}

void foo(int *b, int c){
 c = 99
 *b = 8; // Stack drawn here
}

main:

foo:

10

20

x

y

99

b

c

address of x

8

Stack

pass the value of &x

dereference parameter b to set argument x’s value

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(int arr[], int n){
 arr[2] = 6;
} Stack

main:

foo:

10

arr
n

addr of array

0 1 2 … 9
array 6

array base address

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(_______ , int n){
 arr[2] = 6;
} Stack

main:

foo:

10

arr
n

addr of array

0 1 2 … 9
array 6

alternative declaration?

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(int *arr, int n){
 arr[2] = 6;
} Stack

main:

foo:

10

arr
n

addr of array

0 1 2 … 9
array 6

pass a pointer instead

Can you return an array?

• Suppose you wanted to write a function that copies an array (of 5 integers).
• Given: array to copy

copy_array(int array[]) {
 int result[5];
 result[0] = array[0];
 …
 result[4] = array[4];
 return result;
}

As written above, this would be a terrible way of implementing this.
(Don’t worry, compiler won’t let you do this anyway.)

Consider the memory…

copy_array(int array[]) {
 int result[5];
 result[0] = array[0];
 …
 result[4] = array[4];
 return result;
}

(In main):
copy = copy_array(…)

copy_array:

main:

copy:

result

Consider the memory…

copy_array(int array[]) {
 int result[5];
 result[0] = array[0];
 …
 result[4] = array[4];
 return result;
}

(In main):
copy = copy_array(…)

copy_array:

main:

copy:

resultresult

Consider the memory…

copy_array(int array[]) {
 int result[5];
 result[0] = array[0];
 …
 result[4] = array[4];
 return result;
}

(In main):
copy = copy_array(…)

main:

copy:

When we return from copy_array,
its stack frame is gone!

Left with a pointer to nowhere.

Using the Heap

int *copy_array(int num, int array[]) {
 int *result = malloc(num * sizeof(int));

 result[0] = array[0];
 …

 return result;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data
Heap

result:malloc memory is on the heap.

Doesn’t matter what happens on the
stack (function calls, returns, etc.)

Pointers to Pointers

• Why stop at just one pointer?

int **double_iptr;

• “A pointer to a pointer to an int.”
• Dereference once: pointer to an int
• Dereference twice: int

• Commonly used to:
• Allow a function to modify a pointer (data structures)
• Dynamically create an array of pointers.
• (Program command line arguments use this.)

Up Next:

• Function calls and stack management

