
CS31: Introduction to
Computer Systems

Dr. Sukrit Venkatagiri
Swarthmore College

Dive into Systems by Matthews, Newhall, and Webb Stable Diffusion

Week 6, Class 2
Functions

and the Stack
02/29/24

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Maze Lab
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

Reading Quiz

The portion of the stack allocated for a single
function is known as a…
A. function block

B. function segment

C. stack pointer

D. stack frame

The stack frame for the currently-
executing function is bounded by the
stack pointer and the ___.

A. frame pointer

B. bounds pointer

C. function pointer

D. stack pointer #2

Using a stack to record function calls allows a
language to easily support…
A. iteration

B. recursion

C. pointers

D. gotos

Overview

• Stack data structure, applied to memory

• Behavior of function calls

• Storage of function data, at assembly level

“a” Stack

• A stack is a basic data structure
• Last in, first out behavior (LIFO)… just like a stack of papers
• Two operations

• Push (add item to top of stack)
• Pop (remove item from top of stack)

Oldest data

Newest data

Push (add data item)

Pop (remove and return item)

“the” Stack

• Apply stack data structure to memory
• Store local (automatic) variables
• Maintain state for functions (e.g., where to return)

• Organized into units called frames
• One frame represents all of the information for one function
• Sometimes called activation records

Memory Model

• Starts at the highest memory
addresses, grows into lower
addresses

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Stack Frames

• As functions get called,
new frames added to stack

• Example: Lab 4
• main calls get_values()
• get_values calls read_float()
• read_float calls I/O library

main

0xFFFFFFFF

get_values

read_float

(I/O library)

Stack Frames

• As functions return,
frames removed from stack

• Example: Lab 4
• I/O library returns to read_float
• read_float returns to get_values
• get_values returns to main

main

0xFFFFFFFF

get_values

read_float

(I/O library)

All of this stack growing/shrinking happens automatically
(from the programmer’s perspective)

What is responsible for creating and removing
stack frames? Why?

A. The user

B. The compiler

C. C library code

D. The operating system

E. Something / someone else

Insight: EVERY function needs a stack frame.
Creating / destroying a stack frame is a
(mostly) generic procedure

Stack Frame Contents

• What needs to be stored in a stack frame?
Alternatively: What must a function know / access?

• Local variables
• Current / previous stack frame location
• Function arguments
• Return address
• Return value

• Saved registers
• Spilled temporaries main

0xFFFFFFFF

get_values

read_float

Local Variables

If the programmer says:
int x = 0;

Where should x be stored?
 (Recall basic stack data structure)

Which memory address is that?

main

0xFFFFFFFF

function 1

function 2

X goes here

0x????????

How should we determine the address to use
for storing a new local variable?

A. The programmer specifies the variable location

B. The CPU stores the location of the current stack frame

C. The operating system keeps track of the top of the stack

D. The compiler knows / determines where the local data for
each function will be as it generates code

E. The address is determined some other way

Program Characteristics

• Compile time (static)
• Information that is known by analyzing your program
• Independent of the machine and inputs

• Run time (dynamic)
• Information that isn’t known until program is running
• Depends on machine characteristics and user input

The Compiler Can…

• Perform type checking

• Determine how much space you need on the stack to store local
variables

• Insert assembly instructions for you to set up the stack for function calls
• Create stack frames on function call
• Restore stack to previous state on function return

Local Variables

• Compiler can allocate N bytes on the stack by
subtracting N from the “stack pointer” (moving the
stack pointer “up”): %rsp

Current Stack
Frame

Current Stack
Frame

rsp

rsp - N

N bytes

New variable

The Compiler Can’t…
• Predict user input

int main(void) {
 int decision = [read user input];
 if (decision > 5) {
 funcA();
 } else {
 funcB();
 }
} main

0xFFFFFFFF

?

The Compiler Can’t…
• Predict user input.

int main(void) {
 int decision = [read user input];
 if (decision > 5) {
 funcA();
 } else {
 funcB();
 }
} main

0xFFFFFFFF

funcB

main

0xFFFFFFFF

funcA OR

The Compiler Can’t…
• Predict user input

• Can’t assume a function will always be at a certain
address on the stack

main

0xFFFFFFFF

funcB

main

0xFFFFFFFF

funcA OR
Alternative: create stack
frames relative to the current
(dynamic) state of the stack

Stack Frame Location

• Where in memory is the current stack frame?

main

0xFFFFFFFF

function 1

function 2
Current top of stack

Current bottom of stack

Recall: x86_64 Register Conventions
• Working memory for currently

executing program
• Temporary data

(%rax - %r15)

• Location of runtime stack
(%rbp, %rsp)

• Address of next instruction to
execute (%rip)

• Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax
%rbx
%rcx
%rdx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13

%r14
%r15

Stack Frame Location

• Where in memory is the current stack frame?

• Maintain invariant:
• The current function’s

stack frame is always
between the addresses
stored in rsp and rbp

• rsp: stack pointer
• rbp: frame pointer (base pointer) main

0xFFFFFFFF

function 1

function 2
rsp

rbp

Stack Frame Location

• Compiler ensures that this invariant holds
• We’ll see how a bit later

• This is why all local
variables we’ve seen
in assembly are relative
to rbp or rsp!

main

0xFFFFFFFF

function 1

function 2
rsp

rbp

How would we implement pushing x to the
top of the stack in x86_64?
A. Increment rsp

Store x at (rsp)

B. Store x at (rsp)
Increment rsp

C. Decrement rsp
Store x at (rsp)

D. Store x at (rsp)
Decrement rsp

E. Copy rsp to rbp
Store x at rbp

main

0xFFFFFFFF

function 1

function 2

X goes here
rsp

(Top of stack)

rbp
(Frame start)

Local Variables

• More generally, we can make space on the stack for N bytes by
subtracting N from rsp

Current Stack
Frame

Current Stack
Frame

rsp rsp - N
N bytes

New variable

Local Variables

• More generally, we can make space on the stack for N bytes by
subtracting N from rsp

• When we’re done, free the space by adding N back to rsp

Current Stack
Frame

Current Stack
Frame

rsp

rsp - N

N bytes

New variable

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2

Stack Frame Relationships

• If function 1 calls function 2:
• function 1 is the caller
• function 2 is the callee

• With respect to main:
• main is the caller
• function 1 is the callee

main

0xFFFFFFFF

function 1
(caller)

function 2
(callee)

Stack Frame Relationships

• If function 1 calls function 2:
• function 1 is the caller
• function 2 is the callee

• With respect to main:
• main is the caller
• function 1 is the callee

Main
(caller)

0xFFFFFFFF

function 1
(callee)
(caller)

function 2
(callee)

Where should we store all this stuff? Why?

A. In registers
B. On the heap
C. In the caller’s stack frame
D. In the callee’s stack frame
E. All of the above
F. None of the above

Previous stack frame base address
Function arguments
Return value
Return address

Calling Convention

• You could store this stuff wherever you want!
• The hardware does NOT care
• What matters: everyone agrees on where to find the necessary data

• Calling convention: agreed upon system for exchanging data between
caller and callee

• When possible, keep values in registers
• Accessing registers is faster than memory (stack)

x86_64 Calling Convention

• The function’s return value:
• In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
• Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
• Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
• First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
• Any additional arguments stored on the caller’s stack frame (shared with callee)

x86_64 Calling Convention

• The function’s return value:
• In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
• Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
• Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
• First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
• Any additional arguments stored on the caller’s stack frame (shared with callee)

Return Value

• If the callee function produces a result, the caller can find it in %rax

• We saw this when we wrote our function in the lab:
• Copy the result to %rax before we finishing up

x86_64 Calling Convention

• The function’s return value:
• In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
• Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
• Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
• First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
• Any additional arguments stored on the caller’s stack frame (shared with callee)

Dynamic Stack Accounting
• Dedicate CPU registers for stack bookkeeping
• %rsp (stack pointer): Top of current stack frame
• %rbp (frame pointer): Base of current stack frame

• Compiler maintains these pointers by inserting instructions on
function call/return.
• It doesn’t know (or care about) the exact addresses they point to.
• This is why we’ve been accessing variables relative to %rbp in assembly…

current stack
frame

%rsp

%rbp …

Frame Pointer

• Must maintain invariant:
– The current function’s stack frame is always

between the addresses stored in %rsp and %rbp

• Must adjust %rsp, rbp on call / return

caller
%rsp

%rbp …

callee

Frame Pointer

• Must maintain invariant:
– The current function’s stack frame is always

between the addresses stored in %rsp and %rbp

• Immediately upon calling a function:
1. push %rbp

caller
%rsp

…%rbp

caller’s %rbp value

callee

Frame Pointer

• Must maintain invariant:
– The current function’s stack frame is always

between the addresses stored in %rsp and %rbp

• Immediately upon calling a function:
1. push %rbp
2. Set %rbp = %rsp

caller
%rsp

…%rbp

caller’s %rbp value

callee

Frame Pointer

• Must maintain invariant:
– The current function’s stack frame is always

between the addresses stored in %rsp and %rbp

• Immediately upon calling a function:
1. pushl %rbp
2. Set %rbp = %rsp
3. Subtract N from %rsp

caller
%rsp

…%rbp

caller’s %rbp value

Callee can now execute.

callee

Frame Pointer

• Must maintain invariant:
– The current function’s stack frame is always

between the addresses stored in %rsp and %rbp

• To return, reverse this:

caller
%rsp

…%rbp

caller’s %rbp value

Frame Pointer

• Must maintain invariant:
– The current function’s stack frame is always

between the addresses stored in %rsp and %rbp

• To return, reverse this:
1. set %rsp = %rbp

caller
%rsp

…%rbp

caller’s %rbp value

Frame Pointer

• Must maintain invariant:
– The current function’s stack frame is always

between the addresses stored in %rsp and %rbp

• To return, reverse this:
1. set %rsp = %rbp
2. pop %rbp

caller
%rsp

…%rbp

caller’s %rbp value

Frame Pointer

• Must maintain invariant:
– The current function’s stack frame is always

between the addresses stored in %rsp and %rbp

• To return, reverse this:
1. set %rsp = %rbp
2. pop %rbp

caller
%rsp

…%rbpBack to where we started.

X86_64 has another convenience
instruction for this: leaveq

callee

caller
%rsp

…%rbp

caller’s %rbp value

push %rbp (store caller’s frame pointer)

Frame Pointer: Function Call

caller
%rsp

…%rbp

Initial state

callee

caller
%rsp

…%rbp

caller’s %rbp value

mov %rsp, %rbp
(establish callee’s frame pointer)

callee

caller
%rsp

…%rbp

caller’s %rbp value

sub $SIZE, %rsp
(allocate space for callee’s locals)

caller
%rsp

…%rbp

pop %rbp (restore caller’s frame pointer)

Frame Pointer: Function Return
callee

caller
%rsp

…%rbp

caller’s %rbp value

mov %rbp, %rsp
(restore caller’s stack pointer)

callee

caller
%rsp

…%rbp

caller’s %rbp value

Want to restore caller’s frame.

x86_64 provides a convenience
instruction that does all of this:
leaveq

x86_64 Calling Convention

• The function’s return value:
• In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
• Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
• Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
• First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
• Any additional arguments stored on the caller’s stack frame (shared with callee)

Instructions in Memory

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

funcA:
…
callq funcB
…

funcB:
push %rbp
mov %rsp, %rbp
…

Function A

Function B

…

Program Counter

Program
Counter (PC)

funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Text Memory RegionRecall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

add $5, %rcx

Program Counter

Program
Counter (PC)

Text Memory RegionRecall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

add $5, %rcx

Update PC to next instruction.

Execute the addl.

funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Program Counter

Program
Counter (PC)

Recall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

mov $rcx, -8(%rbp)

Text Memory Region
funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Program Counter

Program
Counter (PC)

Recall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Follow PC, fetch instruction:

mov $rcx, -8(%rbp)

Update PC to next instruction.

Execute the mov.

Text Memory Region
funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Program Counter

Program
Counter (PC)

Recall: PC stores the address of
the next instruction.
(A pointer to the next instruction.)

What do we do now?

Keep executing in a straight line
downwards like this until:

We hit a jump instruction.
We call a function.

Text Memory Region
funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Changing the PC: Jump

• On a (non-function call) jump:
– Check condition codes
– Set PC to execute elsewhere (not next instruction)

• Do we ever need to go back to the instruction after the jump?

Maybe (and if so, we’d have a label to jump back to), but usually not.

Changing the PC: Functions

Program
Counter (PC)

What we’d like this to do:

Text Memory Region
funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Changing the PC: Functions

Program
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Text Memory Region
funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Changing the PC: Functions

Program
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Execute the body of B, produce
result (stored in %rax).

Text Memory Region
funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Changing the PC: Functions

Program
Counter (PC)

What we’d like this to do:

Set up function B’s stack.

Execute the body of B, produce
result (stored in %rax).

Restore function A’s stack.

Text Memory Region
funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Changing the PC: Functions

Program
Counter (PC)

What we’d like this to do:

Return:
Go back to what we were doing
before funcB started.

Unlike jumping, we intend to go back!

Text Memory Region
funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Like push, pop, and leave, call and ret
are convenience instructions.
What should they do to support the PC-
changing behavior we need? (The PC is %rip.)

call
In words:

In instructions:

ret
In words:

In instructions:

Functions and the Stack

Program
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory RegionExecuting instruction:
callq funcB

PC points to next instruction

funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Functions and the Stack

Program
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. push %rip funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Functions and the Stack

Program
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. push %rip
2. jump funcB
3. (execute funcB)

Function B

funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Functions and the Stack

Program
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop %rip

funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Functions and the Stack

Program
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region
6. (resume funcA) funcA:

add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Functions and the Stack

Program
Counter (%rip)

Function A

…

Stack Memory Region

Text Memory Region

Stored PC in funcA

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop %rip
6. (resume funcA)

funcA:
add $5, %rcx
mov %rcx, -8(%rbp)
…
callq funcB
add %rax, %rcx
…

funcB:
push %rbp
mov %rsp, %rbp
…
mov $10, %rax
leaveq
retq

Functions and the Stack

Program
Counter (%rip)

Function A

…

Stack Memory Region

Stored PC in funcA

1. push %rip
2. jump funcB
3. (execute funcB)
4. restore stack
5. pop %rip
6. (resume funcA)

callq

leaveq
retq

Return address:

Address of the instruction we should
jump back to when we finish (return
from) the currently executing function.

x86_64 Stack / Function Call Instructions

push Create space on the stack and place
the source there.

sub $8, %rsp
mov src, (%rsp)

pop Remove the top item off the stack and
store it at the destination.

mov (%rsp), dst
add $8, %rsp

callq 1. Push return address on stack
 2. Jump to start of function

push %rip
jmp target

leaveq Prepare the stack for return
(restoring caller’s stack frame)

mov %rbp, %rsp
pop %rbp

retq
Return to the caller, PC ß saved PC
(pop return address off the stack into
PC (rip))

pop %rip

x86_64 Calling Convention

• The function’s return value:
• In register %rax

• The caller’s %rbp value (caller’s saved frame pointer)
• Placed on the stack in the callee’s stack frame

• The return address (saved PC value to resume execution on return)
• Placed on the stack in the caller’s stack frame

• Arguments passed to a function:
• First six passed in registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9)
• Any additional arguments stored on the caller’s stack frame (shared with callee)

Function Arguments

• Most functions don’t receive more than 6 arguments, so x86_64 can
simply use registers most of the time.

• If we do have more than 6 arguments though (e.g., perhaps a printf
with lots of placeholders), we can’t fit them all in registers.

• In that case, we need to store the extra arguments on the stack.
By convention, they go in the caller’s stack frame.

If we need to place arguments in the caller’s stack
frame, should they go above or below the return
address?

A. Above

B. Below

C. It doesn’t matter

D. Somewhere else
Caller

…

Return Address

Callee

Above

Below

x86_64 Stack / Function Call Instructions

push Create space on the stack and place
the source there.

sub $8, %rsp
mov src, (%rsp)

pop Remove the top item off the stack and
store it at the destination.

mov (%rsp), dst
add $8, %rsp

callq 1. Push return address on stack
 2. Jump to start of function

push %rip
jmp target

leaveq Prepare the stack for return
(restoring caller’s stack frame)

mov %rbp, %rsp
pop %rbp

retq
Return to the caller, PC ß saved PC
(pop return address off the stack into
PC (rip))

pop %rip

Arguments
• Extra arguments to the callee are stored just underneath the return

address.

• Does it matter what order
we store the arguments in?

• Not really, as long as
we’re consistent
(follow conventions).

Caller

…

Return Address

Callee

Callee Arguments

rsp

rbp

This is why arguments can be
found at positive offsets relative
to %rbp.

Stack Frame Contents

• What needs to be stored in a stack frame?
• Alternatively: What must a function know?

• Local variables
• Previous stack frame base address
• Function arguments
• Return value
• Return address

• Saved registers
• Spilled temporaries

main

0xFFFFFFFF

function 1

function 2

Saving Registers

• Registers are a relatively scarce resource, but they’re fast to access.
Memory is plentiful, but slower to access.

• Should the caller save its registers to free them up for the callee to use?
• Should the callee save the registers in case the caller was using them?
• Who needs more registers for temporary calculations, the caller or

callee?

• Clearly the answers depend on what the functions do…

Splitting the difference…

• We can’t know the answers to those questions in advance…

• Divide registers into two groups:
• Caller-saved: %rax, %rdi, %rsi, %rdx, %rcx, %r8, %r9, %r10, %r11

• If the caller wants to preserve these registers, it must save them prior to calling callee
• callee free to trash these, caller will restore if needed

• Callee-saved: %rbx, %r12, %r13, %r14, %r15
• If the callee wants to use these registers, it must save them first, and restore them

before returning
• caller can assume these will be preserved

Running Out of Registers

• Some computations require more than 16 general-purpose registers
to store temporary values.

• Register spilling: The compiler will move some temporary values to
memory, if necessary.
• Values pushed onto stack, popped off later
• No explicit variable declared by user
• This is getting to the boundary of CS 31 information – take CS 75 (compilers)

for more details.

Up next…

• Connecting Arrays, Structs, and Pointers with assembly

