
CS31: Introduction to
Computer Systems

Dr. Sukrit Venkatagiri
Swarthmore College

Dive into Systems by Matthews, Newhall, and Webb Stable Diffusion

Week 4, Class 2
ISAs and Assembly

02/13/24

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

Overview

• How to directly interact with hardware

• Instruction set architecture (ISA)
• Interface between programmer and CPU
• Established instruction format (assembly lang)

• Assembly programming (x86_64)

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Last week: Circuits, Hardware Implementation

This week: Machine Interface

Compilation Steps (.c to a.out)
text

executable
binary

C program (p1.c)

Executable code (a.out)

Usually compile to a.out in
a single step: gcc p1.c

Compiler (gcc)

Reality is more complex:
there are intermediate steps!

Compilation Steps (.c to a.out)
text

text

executable
binary

Compiler (gcc -S)

C program (p1.c)

Assembly program (p1.s)

Executable code (a.out)

You can see the results of
intermediate compilation
steps using different gcc flagsCS75

Assembly Code

Human-readable form of CPU instructions
• Almost a 1-to-1 mapping to hardware instructions (Machine Code)
• Hides some details:

• Registers have names rather than numbers
• Instructions have names rather than variable-size codes

We’re going to use x86_64 assembly
• Can compile C to x86_64 assembly on our system:

 gcc -S code.c # open code.s in an editor to view

C to Assembly

C
int main(void) {
 long a = 10;
 long b = 20;

 a = a + b;

 return a;
}

x86_64 Assembly
push %rbp
mov %rsp,%rbp
movq $10,-0x10(%rbp)
movq $20,-0x8(%rbp)
mov -0x8(%rbp),%rax
add %rax,-0x10(%rbp)
mov -0x10(%rbp),%rax
pop %rbp
ret

Compilation Steps (.c to a.out)
text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of
intermediate compilation
steps using different gcc flags

Machine
Code

Machine Code

Binary (0’s and 1’s) encoding of instructions
• Opcode bits identify the instruction
• Other bits encode operand(s), where to store the results

 (ex) 01001010 opcode operands
 01 001 010
 ADD %r1 %r2

• bits fed through different
CPU circuitry:

MUXRegister #0

Register #1

Register #2
. . . MUX

A
L
U

01 | 001 | 010

0:
1:
2:
3:
4:
…

N-1:

(Memory)

Assembly to Machine Code

x86_64 Assembly
push %rbp
mov %rsp,%rbp
movq $10,-0x10(%rbp)
movq $20,-0x8(%rbp)
mov -0x8(%rbp),%rax
add %rax,-0x10(%rbp)
mov -0x10(%rbp),%rax
pop %rbp
ret

x86_64 Machine Code (in hex)
55
48 89 e5
48 c7 45 f0 0a 00 00 00
48 c7 45 f8 14 00 00 00
48 8b 45 f8
48 01 45 f0
48 8b 45 f0
5d
c3

Compilation Steps (.c to a.out)
text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

High-level language

CPU-specific format (011010…)

Interface for speaking to CPU

“Why should I learn Assembly?”

• Because I have to…

• You want to understand how computers work

• You want to learn how to write fast and efficient code

• Assembly is scary at first; eventually it will be scary good

Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:
• Defines a set of instructions and specifies their machine code format
• Makes CPU resources (registers, flags) available to the programmer
• Allows instructions to access main memory (potentially with limitations)
• Provides control flow mechanisms (instructions to change what executes next)

Instruction Set Architecture (ISA)

• The agreed-upon interface between all software that runs on the
machine and the hardware that executes it.

I/O systemCPU / Processor

Compiler
Operating

System

Application / Program

Digital Circuits
Logic Gates

Instruction Set
 Architecture

ISA Examples

• Intel IA-32 (80x86)
• ARM
• MIPS
• PowerPC
• IBM Cell
• Motorola 68k

• Intel x86_64
• Intel IA-64 (Itanium)
• VAX
• SPARC
• Alpha
• IBM 360

How many of these ISAs have you
used? (Don’t worry if you’re not sure. Try to guess
based on the types of CPUs/devices you interact with.)

• Intel IA-32 (80x86)
• ARM
• MIPS
• PowerPC
• IBM Cell
• Motorola 68k

• Intel x86_64
• Intel IA-64 (Itanium)
• VAX
• SPARC
• Alpha
• IBM 360

A. 0
B. 1-2
C. 3-4

D. 5-6
E. 7+

How many of these ISAs have you
used? (Don’t worry if you’re not sure. Try to guess
based on the types of CPUs/devices you interact with.)

• Intel IA-32 (80x86) [Intel ~<2010s]
• ARM [Macs ~> 2020, phones,

routers, etc.]
• MIPS [routers]
• PowerPC [Macs < 2006]
• IBM Cell [Sony PS3]
• Motorola 68k

• Intel x86_64 [Intel & AMD today,
PS4]
• Intel IA-64 (Itanium)
• VAX
• SPARC
• Alpha
• IBM 360

A. 0
B. 1-2
C. 3-4

D. 5-6
E. 7+

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users
• Allows a program to run on any machine

(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users
• Allows a program to run on any machine

(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

Instruction Translation

sum.s from sum.c:
 gcc –S sum.c

• Instructions to set up the stack
frame and get argument values

• An add instruction to compute sum

• Instructions to return from function

long sum(long x, long y) {
 long result;
 result = x + y;
 return result;
}

sum.c (High-level C)

push %rbp
mov %rsp,%rbp
mov %rdi,-0x18(%rbp)
mov %rsi,-0x20(%rbp)
mov -0x18(%rbp),%rdx
mov -0x20(%rbp),%rax
add %rdx,%rax
mov %rax,-0x8(%rbp)
mov -0x8(%rbp),%rax
pop %rbp
ret

sum.s (Assembly)

Instruction Translation

sum.s from sum.c:
 gcc –S sum.c

• What should these instructions do?

• What is/isn’t allowed by hardware?

• How complex should they be?

Example: supporting multiplication

long sum(long x, long y) {
 long result;
 result = x + y;
 return result;
}

sum.c (High-level C)

push %rbp
mov %rsp,%rbp
mov %rdi,-0x18(%rbp)
mov %rsi,-0x20(%rbp)
mov -0x18(%rbp),%rdx
mov -0x20(%rbp),%rax
add %rdx,%rax
mov %rax,-0x8(%rbp)
mov -0x8(%rbp),%rax
pop %rbp
ret

sum.s (Assembly)

Questions?

Multiplexor: Chooses an input value
Inputs: 2N data inputs, N signal bits
Output: is one of the 2N input values

• Control signal c, chooses the input for output
• When c is 1: choose a, when c is 0: choose b

out
b

c

a out = (c & a)|(~c &b)

1 bit 2-way MUX

N-Way Multiplexor
Choose one of N inputs, need log2 N select bits

D0

D3

Out

c0

c1

MUX4

D2

D1

4-Way Multiplexor

C Input to
 choose D0

D0

c1
c0

.

c1 c2 Output
0 0 D0
0 1 D1
1 0 D2
1 1 D3

Two multiplexors in CPU:

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Two multiplexors in CPU:

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Two multiplexors in CPU:

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Two multiplexors in CPU:

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Two multiplexors in CPU:

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

R-S Latch: Stores Value Q
When R and S are both 1: Maintain a value

R and S are never both simultaneously 0

• To write a new value:
• Set S to 0 momentarily (R stays at 1): to write a 1
• Set R to 0 momentarily (S stays at 1): to write a 0

Q (value stored)

~Q

S

R

R-S Latch

a

b

S R Q/
~Q

~(S&a) = Q
(a)

~(R&a) = ~Q
(b)

0 0 ND ND ND
0 1 1/0 1 0
1 0 1/0 0 1
1 1 1/0 1 0
… … 0/1 … …

Gated D Latch
Controls S-R latch writing, ensures S & R never both 0

Q (value stored)

~Q

S

R

R-S Latch
D

WE

D: into top NAND, ~D into bottom NAND
WE: write-enabled, when set, latch is set to value of D

Latches used in registers (up next) and SRAM (caches, later)
 Fast, not very dense, expensive

DRAM: capacitor-based:

An N-bit Register

• Fixed-size storage (8-bit, 32-bit, 64-bit, etc.)

• One gated D latch lets us store one bit
• Connect N of them to the same write-enable wire!

Write-enable:

N-bit input
wires (bus):

N-bit Register

…
Bit 0

Bit 1

Bit N-1

Data out64-bit Register=

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

Compilation Steps (.c to a.out)
text

executable
binary

C program (p1.c)

Executable code (a.out)

Usually compile to a.out in
a single step: gcc p1.c

Compiler (gcc)

Reality is more complex:
there are intermediate steps!

Compilation Steps (.c to a.out)
text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

High-level language

CPU-specific format (011010…)

Interface for speaking to CPU

Assembly Code

Human-readable form of CPU instructions
• Almost a 1-to-1 mapping to hardware instructions (Machine Code)
• Hides some details:

• Registers have names rather than numbers
• Instructions have names rather than variable-size codes

We’re going to use x86_64 assembly
• Can compile C to x86_64 assembly on our system:

 gcc -S code.c # open code.s in an editor to view

Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:
• Defines a set of instructions and specifies their machine code format
• Makes CPU resources (registers, flags) available to the programmer
• Allows instructions to access main memory (potentially with limitations)
• Provides control flow mechanisms (instructions to change what executes next)

“Why should I learn Assembly?”

• Because I have to…

• You want to understand how computers work

• You want to learn how to write fast and efficient code

• Assembly is scary at first; eventually it will be scary good

Instruction Set Architecture (ISA)

• The agreed-upon interface between all software that runs on the
machine and the hardware that executes it.

I/O systemCPU / Processor

Compiler
Operating

System

Application / Program

Digital Circuits
Logic Gates

Instruction Set
 Architecture

Intel x86 Family

Intel i386 (1985)
• 12 MHz - 40 MHz
• ~300,000 transistors
• Component size: 1.5 µm

Intel Core i9 9900k (2018)
• ~4,000 MHz
• ~7,000,000,000 transistors
• Component size: 14 nm

Everything in this family uses the
same ISA (Same instructions)!

C statement: A = A*B
Simple instructions:

LOAD A, R1
LOAD B, R2
PROD R1, R2
STORE R2, A

Powerful instructions:

MULT B, A

Translation:
Load the values ‘A’ and ‘B’ from memory into registers (R1 and R2) ,
compute the product, store the result in memory where ‘A’ was.

RISC versus CISC (Historically)

• Complex Instruction Set Computing (CISC)
• Large, rich instruction set
• More complicated instructions built into hardware
• Multiple clock cycles per instruction
• Easier for humans to reason about

• Reduced Instruction Set Computing (RISC)
• Small, highly optimized set of instructions
• Memory accesses are specific instructions
• One instruction per clock cycle
• Compiler: more work, more potential optimization

So . . . Which System “Won”?

• Most ISAs (after mid/late 1980’s) are RISC

• The ubiquitous Intel x86 is CISC
Tablets and smartphones (ARM) taking over?

• x86 breaks down CISC assembly into multiple, RISC-like,
machine language instructions

• Distinction between RISC and CISC is less clear
• Some RISC instruction sets have more instructions than some CISC sets

ISA Examples

• Intel IA-32 (CISC)
• ARM (RISC)
• MIPS (RISC)
• PowerPC (RISC)
• IBM Cell (RISC)
• Motorola 68k (CISC)

• Intel x86_64 (CISC)
• Intel IA-64 (Neither, VLIW)
• VAX (CISC)
• SPARC (RISC)
• Alpha (RISC)
• IBM 360 (CISC)

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users
• Allows a program to run on any machine

(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

Recall: Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:
• Defines a set of instructions and specifies their machine code format
• Makes CPU resources (registers, flags) available to the programmer
• Allows instructions to access main memory (potentially with limitations)
• Provides control flow mechanisms (instructions to change what executes next)

Processor State in Registers
• Working memory for currently

executing program
• Temporary data

(%rax - %r15)

• Location of runtime stack
(%rbp, %rsp)

• Address of next instruction to
execute (%rip)

• Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax
%rbx
%rcx
%rdx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13

%r14
%r15

Component Registers
• Registers starting with “r” are

64-bit registers

• Sometimes, you might only want to
store 32 bits (e.g., int variable)

• You can access the lower 32 bits of a
register:
• with a prefix of e rather than r for

registers %rax - %rdi
(e.g., %eax, %ebx, …, %esi, %edi)

• with a suffix of d for
registers %r8 - %r15
(e.g., %r8d, %r9d, …, %r15d)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax
%rbx
%rcx
%rdx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13

%r14
%r15

Assembly Programmer’s View of State
CPU

Memory

Addresses

Data

Instructions

Registers:
 PC: Program counter (%rip)

Condition codes (%EFLAGS)
General Purpose (%rax - %r15)

Memory:
• Byte addressable array
• Program code and data
• Execution stack

name value
%rax

%rbx

%rcx

%rdx

…

%r15

%rsp

%rbp

%rip next instr
addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:
 data
 instrs
 stack

0xffffffff

Registers

BUS

Types of assembly instructions

• Data movement
• Move values between registers and memory
• Examples: mov, movl, movq

• Load: move data from memory to register

• Store: move data from register to memory

The suffix letters specify
how many bytes to move

(not always necessary,
depending on context).

l -> 32 bits
q -> 64 bits

Data Movement

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr 0:
1:
2:
3:
4:
…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Move values between memory and registers or between two registers.

Types of assembly instructions

• Data movement
• Move values between registers and memory

• Arithmetic
• Uses ALU to compute a value
• Examples: add, addl, addq, sub, subl, subq…

Arithmetic

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr 0:
1:
2:
3:
4:
…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Use ALU to compute a value, store result in register / memory.

Types of assembly instructions

• Data movement
• Move values between registers and memory

• Arithmetic
• Uses ALU to compute a value

• Control
• Change PC based on ALU condition code state
• Example: jmp

Control

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr 0:
1:
2:
3:
4:
…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Change PC based on ALU condition code state.

Types of assembly instructions

• Data movement
• Move values between registers and memory

• Arithmetic
• Uses ALU to compute a value

• Control
• Change PC based on ALU condition code state

• Stack / Function call (We’ll cover these in detail later)
• Shortcut instructions for common operations

Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

• A location might be:
• A register
• A location in memory

• In x86_64, an instruction can access at most one memory location

Addressing Mode: Register

• Instructions can refer to the name of a register

• Examples:
• mov %rax, %r15

(Copy the contents of %rax into %r15 -- overwrites %r15, no change to %rax)

• add %r9, %rdx
(Add the contents of %r9 and %rdx, store the result in %rdx, no change to %r9)

Addressing Mode: Immediate

• Refers to a constant or “literal” value, starts with $

• Allows programmer to hard-code a number

• Can be either decimal (no prefix) or hexadecimal (0x prefix)

mov $10, %rax
• Put the constant value 10 in register rax.

add $0xF, %rdx
• Add 15 (0xF) to %rdx and store the result in %rdx.

Addressing Mode: Memory

• Accessing memory requires you to specify which address you want.
• Put the address in a register.
• Access the register with () around the register’s name.

mov (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

Addressing Mode: Memory

mov (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

(Memory)

name value

%rax 0

%rcx 0x1A68

…

CPU Registers
0x0:
0x8:

0x10:
0x18:

…
0x1A60
0x1A68 42
0x1A70
0x1A78

…
0xFFFFFFFF:

Addressing Mode: Memory

mov (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

name value

%rax 0

%rcx 0x1A68

…

CPU Registers
0x0:
0x8:

0x10:
0x18:

…
0x1A60
0x1A68 42
0x1A70
0x1A78

…
0xFFFFFFFF:

(Memory)

1. Index into memory using the
address in rcx.

0x0:
0x8:

0x10:
0x18:

…
0x1A60
0x1A68 42
0x1A70
0x1A78

…
0xFFFFFFFF:

Addressing Mode: Memory

mov (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx.

2. Copy value at that
address to rax.

Addressing Mode: Displacement

• Like memory mode, but with a constant offset
• Offset is often negative, relative to %rbp

mov -24(%rbp), %rax
• Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

Addressing Mode: Displacement

mov -24(%rbp), %rax
• Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

(Memory)

name value

%rax 0

%rcx 0x1A68

%rbp 0x1A78

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

0x0:
0x8:

0x10:
0x18:

…
0x1A60 11
0x1A68 42
0x1A70
0x1A78

…
0xFFFFFFFF:

0x0:
0x8:

0x10:
0x18:

…
0x1A60 11
0x1A68 42
0x1A70
0x1A78 Not this!

…
0xFFFFFFFF:

Addressing Mode: Displacement

mov -24(%rbp), %rax
• Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

(Memory)

name value

%rax 11

%rcx 0x1A68

%rbp 0x1A78

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

2. Copy value at that
address to rax.

Welcome! Discuss now with
your neighbor:
In the reading, we learned about how
Toyota didn’t properly protect memory
from stack overflow (or properly test its
code)— resulting in unintended
acceleration of cars.

As future software engineers, how sure
would you need to be about the safety
of your code before you shipped it?

Stable Diffusion

Announcements
• Lab 3 due Thur 11:59pm
• Finish feedback + partner survey before class on Thursday
• YOU get to pick your lab partner (both have to list each other)
• Otherwise, randomly assigned

• Lab 4: watch video and complete #1-6 on In-Lab Exercise #5 before lab
• HW grades out
• Solutions: printed and by my door

• HW 4 due Feb 27th, 11:59pm
• Exam syllabus: first day of class to Feb 29th

• Edstem -> example for how to convert truth table into Boolean
expression

Questions?

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

Recall: Assembly Programmer’s View
CPU

Main Memory

Addresses

Data

Instructions

Registers:
 PC: Program counter (%rip)

Condition codes (%EFLAGS)
General Purpose (%rax - %r15)

Main Memory:
• Byte addressable array
• Program code and data
• Execution stack

name value
%rax

%rbx

%rcx

%rdx

…

%r15

%rsp

%rbp

%rip next instr
addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:
 data
 instrs
 stack

0xffffffff

Registers

BUS

Recall: Assembly Programmer’s View

register
register

rax

rbx

r15 register

64 bits (8 bytes)

CPU

rax: all 8 bytes
eax: bytes 0-3
ax: bytes 0-1
al: byte 0

movq: all 8 bytes
movl: bytes 0-3
movw: bytes 0-1
movb: byte 0

Recall: Assembly Programmer’s View

register
register

rax

rbx

r15 register

64 bits (8 bytes)

CPU Main Memory

010000010x0000000000000000

hex address
(64 bits / 16 hex digits)

largest possible memory address
= largest possible address a register can hold
= 264 - 1 = 18,446,744,073,709,551,616 - 1

1 byte
(8 bits)

rax: all 8 bytes
eax: bytes 0-3
ax: bytes 0-1
al: byte 0

movq: all 8 bytes
movl: bytes 0-3
movw: bytes 0-1
movb: byte 0

movq $0x0, %rbx
movb (%rbx), %al

move 1 byte
from memory
into first byte
of register rax

0xFFFFFFFFFFFFFFFF 10101010

“byte addressable memory”

0x0

Recall: Assembly Programmer’s View

register
register

rax

rbx

r15 register

64 bits (8 bytes)

CPU Main Memory

010000010x0000000000000000

hex address
(64 bits / 16 hex digits)

0x0000000000000001

0xFFFFFFFFFFFFFFFF

largest possible memory address
= largest possible address a register can hold
= 264 - 1 = 18,446,744,073,709,551,616 - 1

00000001

1 byte
(8 bits)

10101010
rax: all 8 bytes
eax: bytes 0-3
ax: bytes 0-1
al: byte 0

movq: all 8 bytes
movl: bytes 0-3
movw: bytes 0-1
movb: byte 0

0x0000000000000010

0x0000000000000017

11111001

10101010

111111110x0000000000000011

1st byte
2nd byte

17th byte

18th byte

24th byte

Recall: Assembly Programmer’s View

register
register

rax

rbx

r15 register

64 bits (8 bytes)

CPU Main Memory

010000010x0000000000000000

hex address
(64 bits / 16 hex digits)

0x0000000000000001

0xFFFFFFFFFFFFFFFF

largest possible memory address
= largest possible address a register can hold
= 264 - 1 = 18,446,744,073,709,551,616 - 1

00000001

1 byte
(8 bits)

10101010
rax: all 8 bytes
eax: bytes 0-3
ax: bytes 0-1
al: byte 0

movq: all 8 bytes
movl: bytes 0-3
movw: bytes 0-1
movb: byte 0

0x0000000000000010

0x0000000000000017

11111001

10101010

111111110x0000000000000011 8 bytes
(64 bits)

17th byte

18th byte

24th byte

Recall: Assembly Programmer’s View

register
register

rax

rbx

r15 register

64 bits (8 bytes)

CPU Main Memory

010000010x0000000000000000

hex address
(64 bits / 16 hex digits)

0x0000000000000001

0xFFFFFFFFFFFFFFFF

largest possible memory address
= largest possible address a register can hold
= 264 - 1 = 18,446,744,073,709,551,616 - 1

00000001

1 byte
(8 bits)

10101010
rax: all 8 bytes
eax: bytes 0-3
ax: bytes 0-1
al: byte 0

movq: all 8 bytes
movl: bytes 0-3
movw: bytes 0-1
movb: byte 0

0x0000000000000010

0x0000000000000017

11111001

10101010

111111110x0000000000000011 8 bytes
(64 bits)

largest memory storage size
= 264 bytes
= approx. 17 billion gigabytes

movq $0x10, %rbx
movq (%rbx), %rax

18th byte

24th byte

move 8 bytes
from memory
into all 8 bytes
of register rax

START: 17th byte0x10

Recall: Component Registers
• Registers starting with “r” are

64-bit registers

• Sometimes, you might only want to
store 32 bits (e.g., int variable)

• You can access the lower 32 bits of a
register:
• with a prefix of e rather than r for

registers %rax - %rdi
(e.g., %eax, %ebx, …, %esi, %edi)

• with a suffix of d for
registers %r8 - %r15
(e.g., %r8d, %r9d, …, %r15d)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax
%rbx
%rcx
%rdx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13

%r14
%r15

Recall: Types of Assembly Instructions

• Data movement
• Move values between registers and memory

• Arithmetic
• Uses ALU to compute a value

• Control
• Change PC based on ALU condition code state

• Stack / Function call (We’ll cover these in detail later)
• Shortcut instructions for common operations

Recall: Addressing Modes
• Instructions need to be told where to get operands or store

results. Variety of options for how to address those locations

• Four different addressing modes:
• A register: %rax %r15
• An immediate value: $10 $0x1F $0b000111
• A location in memory: (%rax)
• A location in memory with displacement: -16(%rbp)

• In x86_64, an instruction can access at most one memory
location

What will the state of registers and memory
look like after executing these instructions?

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

x is stored at rbp-8
y is stored at rbp-16

Registers
Name Value
%rax 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory
Address Value

…

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

…

What will the state of registers and memory
look like after executing these instructions?

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

x is stored at rbp-8
y is stored at rbp-16

Registers

Name Value
%rax 2
%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value
0x1FFF000AD0 3
0x1FFF000AD8 10
0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value
%rax 10
%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value
0x1FFF000AD0 23
0x1FFF000AD8 10
0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value
%rax 23
%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value
0x1FFF000AD0 23
0x1FFF000AD8 3
0x1FFF000AE0 0x1FFF000AF0

A.

B.

C.

Solution

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

x is stored at rbp-8
y is stored at rbp-16

Registers

Name Value
%rax 23
%rsp …AE0

%rbp …AE0

Memory

Address Value
0x1FFF000AD0 23
0x1FFF000AD8 3
0x1FFF000AE0 0x1FFF000AF0

C code equivalent:
x = 3;

y = x + (10 << 1);

Subtract 16 from %rsp, %rsp <- 0x…AD0
Move constant 3 to value at 0x…AD8 (x)
Move constant 10 to register %rax
Shift the value in %rax left by 1 bit
Add the value at 0x…AD8 (x) to %rax
Store the value in %rax at 0x…AD0 (y)
Add 16 to %rsp, %rsp <- 0x…AE0

Assembly Visualization Tool

• The authors of Dive into Systems,
including Swarthmore faculty with
help from Swarthmore students, have
developed a tool to help visualize
assembly code execution:

• https://asm.diveintosystems.org

• For this example, use the
arithmetic mode.

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

https://asm.diveintosystems.org/

Control Flow

• Previous examples focused on:
• data movement (mov, movq)
• arithmetic (add, sub, or, neg, sal, etc.)

• Up next: Jumping!

(Changing which
instruction we
execute next)

Unconditional Jumping / Goto
A label is a place you might jump to.

Labels ignored except for goto/jumps.

(Skipped over if encountered)

 int x = 20;
L1:
 int y = x + 30;
L2:
 printf(“%d, %d\n”, x, y);

int main(void) {
 long a = 10;

 long b = 20;

 goto label1;

 a = a + b;

label1:

 return;

Unconditional Jumping / Goto

int main(void) {
 long a = 10;

 long b = 20;

 goto label1;

 a = a + b;

label1:

 return;

pushq %rbp
 mov %rsp, %rbp
 sub $16, %rsp
 movq $10, -16(%ebp)
 movq $20, -8(%ebp)
 jmp label1
 movq -8(%rbp), $rax
 add $rax, -16(%rbp)
 movq -16(%rbp), %rax
label1:
 leave

Unconditional Jumping / Goto

Usage besides goto?
• infinite loop
• break;
• continue;
• functions (handled differently)

• Often, we only want to jump
when something is true / false

• Need some way to compare
values, jump based on
comparison results

pushq %rbp
 mov %rsp, %rbp
 sub $16, %rsp
 movq $10, -16(%ebp)
 movq $20, -8(%ebp)
 jmp label1
 movq -8(%rbp), $rax
 add $rax, -16(%rbp)
 movq -16(%rbp), %rax
label1:
 leave

Condition Codes (or Flags)

• Set in two ways:
1. As “side effects” produced by ALU
2. In response to explicit comparison instructions (e.g., cmp, test)

• x86_64 condition codes tell you:
• ZF — zero flag — if the result is zero
• SF — sign flag — if the result’s first bit is set (negative if signed)
• CF — carry flag — if the result overflowed (assuming unsigned) [“carried”]
• OF — overflow flag —if the result overflowed (assuming signed)

Processor State in Registers
• Working memory for currently

executing program
• Temporary data

(%rax - %r15)

• Location of runtime stack
(%rbp, %rsp)

• Address of next instruction to
execute (%rip)

• Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax
%rbx
%rcx
%rdx
%rsi
%rdi
%rsp
%rbp

%r8
%r9
%r10
%r11
%r12
%r13

%r14
%r15

Instructions that set condition codes
1. Arithmetic/logic side effects (add, sub, or, etc.)

2. CMP and TEST: Does not change state of registers, only
condition codes
cmp b, a like computing a-b without storing result

• Sets OF if overflow, Sets CF if carry-out,
Sets ZF if result zero, Sets SF if results is negative

test b, a like computing a&b without storing result
• Sets ZF if result zero, sets SF if a&b < 0

OF and CF flags are zero (there is no overflow with &)

Conditional Jumping
• Jump based on which condition codes are set

Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned jg)
jb CF Below (unsigned)

Jump Instructions:
(See book section 7.4.1)

You do not need to
memorize these!

Example Scenario
long userval;
scanf(“%d”, &userval);

if (userval == 42) {
 userval += 5;

} else {
 userval -= 10;

}

…

• Suppose user gives us a value
via scanf (don’t know value in
advance)

• We want to check to see if it
equals 42
• If so, add 5
• If not, subtract 10

Assembly Visualization Demo: Jump

• Try this in arithmetic mode:

https://asm.diveintosystems.org

Change the value 3 to 42 to alter the
behavior.

Initialize rax
 mov $3, %rax

 cmp $42, %rax
 je L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

https://asm.diveintosystems.org/

Loops

• We’ll look at these in the lab!

Summary
• ISA defines what programmer can do on hardware

• Which instructions are available
• How to access state (registers, memory, etc.)
• This is the architecture’s assembly language

• In this course, we’ll be using x86_64
• Instructions for:

• moving data (mov, movl, movq)
• arithmetic (add, sub, imul, or, sal, etc.)
• control (jmp, je, jne, etc.)

• Condition codes for making control decisions
• If the result is zero (ZF)
• If the result’s first bit is set (negative if signed) (SF)
• If the result overflowed (assuming unsigned) (CF)
• If the result overflowed (assuming signed) (OF)

