Welcome! Discuss now with your neighbor:

1. What is 192.168.1.1?

2. What is 2001:db8:3333:4444:5555:666 6:7777:8888?

W) WIRED

North America Just Ran Out of Old-School Internet Addresses

Every computer, phone, and gadget that connects to the Internet has what's called an Internet Protocol address, or IP address-a kind of..
Sep 24, 2015

IPv4: $2^{32} \sim=4.2 \times 10^{9}$ addresses
IPv6: $2^{128} \sim=3.4 \times 10^{38}$ addresses

CS31: Introduction to Computer Systems

Week 2, Class 2
Binary Arithmetic 02/01/24

Dr. Sukrit Venkatagiri
Swarthmore College

Announcements

- Clickers will count for credit from Tuesday, Feb 6th
- Lab 1 due today 11:59pm
- For Lab 1: Feedback re: using style guide
- From Lab 2: points will be deducted if you don’t ~follow style guide
- HW1 due tomorrow 11:59pm
- Office hours today: 3-4pm
- Accommodations -> please meet with me

Where are we?

Wk	Lecture	Lab
1	Intro to C	C Arrays, Sorting
2	Binary Representation, Arithmetic	Data Rep. \& Conversion
3	Digital Circuits	Circuit Design
4	ISAs \& Assembly Language	"
5	Pointers and Memory	Pointers and Assembly
6	Functions and the Stack	Binary Maze
7	Arrays, Structures \& Pointers	"
8	Storage and Memory Hierarchy	Game of Life
9	Caching	/
10	Operating System, Processing	Strings
11	Virtual Memory	Unix Shell
12	Parallel Applications, Threading	"
13	Threading	pthreads Game of Life
14	Threading	"

Last class...

- Chars, strings, structs, and functions
- Bits, bytes
- Binary and hexadecimal representation
- Converting from binary to decimal

On a computer, data is stored in the following format(s)...

A. Hexadecimal
B. Binary
C. It depends on the operating system
D. It depends on the programming language

On a computer, data is stored in the following format(s)...

A. Hexadecimal

B. Binary

C. It depends on the operating system
D. It depends on the programming language

Today: Data Representation \& Binary Arithmetic

- Number systems + conversion
- Sizes, representation
- Signed-ness
- Binary arithmetic
- Overflow rules

Other (common) number systems

- Base 2: How data is stored in hardware
- Base 8: Used to represent file permissions
- Base 10: Preferred by people
- Base 16: Convenient for representing memory addresses
- Base 64: Commonly used on the Internet (e.g. email attachments)

It's all stored as binary in the computer

Hexadecimal: Base 16

- Fewer digits to represent same value
- Same amount of information!
- Like binary, the base is power of 2
- Each digit is a "nibble", or half a byte.

Each hex digit is a "nibble"

- One hex digit: 16 possible values (0-9, A-F)
- $16=2^{4}$, so each hex digit has exactly four bits worth of information.
- We can map each hex digit to a four-bit binary value (helps for converting between bases)

Each hex digit is a "nibble"

Example value: $0 \times 1 \mathrm{~B} 7$

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 000110110111
1 B 7

Hexadecimal \leftrightarrow Binary Conversion

- Bit patterns as base-16 numbers
- Convert binary to hexadecimal: by splitting into groups of 4 bits each.

Example:
Ob00111100 1010110110110011 = 0x3CADB3

Bin	0011	1100	1010	1101	1011	0011
Hex	3	C	A	D	B	3

Converting Decimal -> Binary

- Two methods:
- division by two remainder
- powers of two and subtraction

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \quad \text { if } D \text { is odd } \\
& \text { set } b_{i} \text { to } 1 \\
& \text { if } D \text { is even } \\
& \text { set } b_{i} \text { to } 0 \\
& \quad \begin{array}{l}
\text { i++ } \\
D=D / 2
\end{array}
\end{aligned}
$$

Example: Converting 105

$$
\mathrm{b}_{0}=1
$$

Method 1: decimal value D, binary result $b\left(b_{i}\right.$ is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \quad \text { if } D \text { is odd } \\
& \quad \text { set } b_{i} \text { to } 1 \\
& \quad \text { if } D \text { is even } \\
& \quad \text { set } b_{i} \text { to } 0 \\
& \quad \begin{array}{l}
\text { i++ } \\
D
\end{array}
\end{aligned}
$$

```
idea: }\quad\begin{array}{ll}{D}\\{}&{D=D/2}
\[
\text { example: D }=105
\]
\[
D=52
\]
\[
\begin{aligned}
& b_{0}=1 \\
& b_{1}=0
\end{aligned}
\]
```


Example: Converting 105

Method 1: decimal value D, binary result $b\left(b_{i}\right.$ is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \quad \text { if } D \text { is odd } \\
& \text { set } b_{i} \text { to } 1 \\
& \text { if } D \text { is even } \\
& \text { set } b_{i} \text { to } 0 \\
& \quad \text { i++ }=D / 2
\end{aligned}
$$

```
idea: D
\[
D=D / 2
\]
\[
D=0 \quad \text { (done) }
\]
```

$$
D=52
$$

$\mathrm{D}=\mathrm{D} / 2 \quad \mathrm{D}=52$

$$
\begin{array}{ll}
D=D / 2 & D=6
\end{array}
$$

$$
\begin{aligned}
\mathrm{b}_{0} & =1 \\
\mathrm{~b}_{1} & =0 \\
\mathrm{~b}_{2} & =0 \\
\mathrm{~b}_{3} & =1 \\
\mathrm{~b}_{4} & =0 \\
\mathrm{~b}_{5} & =1
\end{aligned}
$$

Example: Converting 105

$$
D=D / 2 \quad D=26
$$

$$
D=D / 2 \quad D=13
$$

$$
\begin{array}{ll}
D=D / 2 & D=3
\end{array}
$$

$$
D=1
$$

$$
D=0
$$

$$
105=01101001
$$

Method 2

- $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16,2^{5}=32,2^{6}=64,2^{7}=128$

To convert 105:

- Find largest power of two that's less than 105 (64)
- Subtract $64(105-64=41)$, put a 1 in d_{6}
- Subtract 32 ($41-32=\underline{9}$), put a 1 in d_{5}
- Skip 16, it's larger than 9 , put a 0 in d_{4}
- Subtract 8 (9-8=1), put a 1 in d_{3}
- Skip 4 and 2, put a 0 in d_{2} and d_{1}
- Subtract 1 ($1-1=\underline{0}$), put a 1 in d_{0} (Done)

$$
\begin{array}{lllllll}
\frac{1}{d_{6}} & \frac{1}{d_{5}} & \frac{\theta}{d_{4}} & \frac{1}{d_{3}} & \frac{\theta}{d_{2}} & \frac{\theta}{d_{1}} & \frac{1}{d_{0}}
\end{array}
$$

What is the value of 357 in binary?

876543210
 A. 101100011

B. 101100101
C. 101101001
D. 101110101
E. 110100101

$$
\begin{aligned}
& 2^{0}=1, \quad 2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=16, \\
& 2^{5}=32, \quad 2^{6}=64, \quad 2^{7}=128, \quad 2^{8}=256
\end{aligned}
$$

What is the value of 357 in binary?

$$
\begin{aligned}
& 876543210 \\
& \text { A. } 101100011 \\
& \text { digit position } \\
& \text { B. } 101100101 \\
& 357-256=101 \\
& 101-64=37 \\
& 37-32=5 \\
& 5-4=1 \\
& \text { D. } 101110101 \\
& \text { E. } 110100101 \\
& \frac{1}{d_{8}} \frac{0}{d_{7}} \quad \frac{1}{d_{6}} \quad \frac{1}{d_{5}} \quad \frac{0}{d_{4}} \quad \frac{0}{d_{3}} \quad \frac{1}{d_{2}} \quad \frac{0}{d_{1}} \frac{1}{d_{0}} \\
& 2^{0}=1, \quad 2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=16, \\
& 2^{5}=32, \quad 2^{6}=64, \quad 2^{7}=128, \quad 2^{8}=256
\end{aligned}
$$

Additional Info: Fractional binary numbers

How do we represent fractions in binary?

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision (fraction)

$$
\text { value }=(-1)^{\text {sign }} * 1 \text { fraction * } 2^{(\text {exponent-127) }}
$$

let's just plug in some values and try it out

```
0x40ac49ba: 0 10000001 01011000100100110111010
    sign = 0 exp = 129 fraction = 2902458
        =1*1.2902458*22 = 5.16098
```

 Idon't expect you to memorize this

The integer representation we use in nearly every number system today is...

A. Signed magnitude
B. One's complement
C. Two's complement
D. Unsigned binary only
E. (There's no name for this)

The integer representation we use in nearly every number system today is...

A. Signed magnitude
B. One's complement
C. Two's complement
D. Unsigned binary only
E. (There's no name for this)

In two's complement, we can store...

A. A larger negative value than positive (-128 to 127)
B. The same range (e.g., -128 to 128)
C. A larger positive value than negative (-127 to 128)

In two's complement, we can store...

A. A larger negative value than positive (-128 to 127)
B. The same range (e.g., -128 to 128)
C. A larger positive value than negative (-127 to 128)

If we add two positive operands and get a result that's smaller than either of the operations, \qquad has occurred:
A. Numeric inflation
B. Overflow
C. Integer expansion
D. Bidenomics
E. There's no name for this; it can't happen

If we add two positive operands and get a result that's smaller than either of the operations, \qquad has occurred:
A. Numeric inflation
B. Overflow
C. Integer expansion
D. Bidenomics
E. There's no name for this; it can't happen

So far: Unsigned Integers

With N bits, can represent values: 0 to $2^{n}-1$

We can always add 0's to the front of a number without changing it:

$$
10110=\underline{0} 10110=\underline{00010110}=\underline{0000010110}
$$

So far: Unsigned Integers

With N bits, can represent values: 0 to $2^{\mathrm{n}}-1$

- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long

Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255

$$
\begin{aligned}
& 252=11111100 \\
& 253=1111101 \\
& 254=11111110 \\
& 255=11111111
\end{aligned}
$$

Traditional number line:

Unsigned Integers

Suppose we had one byte

- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=1111110$
$255=11111111$
What if we add one more?

Car odometer "rolls over".

gyyyyyg nnnnnn

Any time we are dealing with a finite storage space we cannot represent an infinite number of values!

Unsigned Integers

Suppose we had one byte

- Can represent $2^{8}(256)$ values
- If unsigned (strictly non-negative):

255 (11111111)

Modular arithmetic: Here, all values are modulo 256.

Unsigned Addition (4-bit)

- Addition works like grade school addition:

$$
\begin{array}{r}
1 \\
0110 \\
+\quad 0100 \\
\hline 1010 \\
+\quad 4 \\
\hline 10
\end{array}
$$

Four bits give us range: 0-15

Unsigned Addition (4-bit)

- Addition works like grade school addition:

$$
\begin{aligned}
& 1 \\
& \begin{array}{l}
0110 \\
+0100 \\
\hline 1010
\end{array} \frac{6}{10}
\end{aligned} \begin{array}{r}
1100 \\
\hline \text { ^no carry out } \begin{array}{l}
\text { ^carry out }
\end{array}
\end{array}
$$

Four bits give us range: 0-15

Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

(C) Put them somewhere else.

Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

NOT USED: Signed Magnitude Representation (for 4 bit values)

- One bit (usually left-most) signals:
- 0 for positive
- 1 for negative

For one byte:
$1=00000001$
$-1=10000001$

Pros: Negation is very simple!
For one byte:

$$
\begin{aligned}
0 & =00000000 \\
-0 & =10000000 \text { ???? }
\end{aligned}
$$

Major con: Two ways to represent zero!

This is not what we do in present day systems

Two's Complement Representation (for four bit values)

Figure 2. A logical layout of two's complement values for bit sequences of length four.

- Borrow nice property from number line:

Only one instance of zero! Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256 unique values:

- 128 non-negative values (0 to 127)
- 128 negative values $(-1$ to -128$)$

Two's Complement

- Only one value for zero
- With N bits, can represent the range:
$--2^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$
- Most significant (first) bit still designates positive(0) / negative (1)
- Negating a value is slightly more complicated:

$$
1=00000001, \quad-1=11111111
$$

Two's Compliment

Each two's compliment number is now:

$$
\left[-2^{n-1 *} d_{n-1}\right]+\left[2^{n-2 *} d_{n-2}\right]+\ldots+\left[2^{1 *} d_{1}\right]+\left[2^{0 *} d_{0}\right]
$$

Note the negative sign on just the first digit.
This is why first digit tells us negative vs. positive.
(The other digits are unchanged and carry the same meaning as unsigned.)

If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's compliment number is now:

$$
\left[-2^{n-1 *} d_{n-1}\right]+\left[2^{n-2 *} d_{n-2}\right]+\ldots+\left[2^{1 *} d_{1}\right]+\left[2^{0 *} d_{0}\right]
$$

A. -2
B. -7
C. -9
D. -25

If we interpret 11001 as a two's complement number, what is the value in decimal?

Each two's compliment number is now:

$$
\left[-2^{n-1 *} d_{n-1}\right]+\left[2^{n-2 *} d_{n-2}\right]+\ldots+\left[2^{1 *} d_{1}\right]+\left[2^{0 *} d_{0}\right]
$$

A. -2
B. $-\underline{7}-16+8+1=-7$
C. -9
D. -25

"If we interpret..."

- What is the decimal value of 1100 ?
- ...as unsigned, 4-bit value: 12 (\%u)
- ...as signed (two's complement), 4-bit value: -4 (\%d)
- ...as an 8-bit value: 12
(i.e., 00001100)

Two's Complement Negation

- To negate a value x, we want to find y such that $x+y=0$.
- For N bits, $\mathrm{y}=2^{\mathrm{N}}-\mathrm{x}$

Negation Example (8 bits)

- For N bits, $\mathrm{y}=2^{\mathrm{N}}-\mathrm{x}$
- Negate 00000010 (2)
$-2^{8}-2=256-2=254$
- Our wheel only goes to 127 !
- Put -2 where 254 would be if wheel was unsigned.
- 254 in binary is 11111110

Negation Shortcut

- A much easier, faster way to negate:
- Flip the bits (0's become 1's, 1's become 0's)
- Add 1
- Negate 00101110 (46)
$-2^{8}-46=256-46=210$
-210 in binary is 11010010

46:	00101110
Flip the bits:	11010001
Add 1	+1
$-46:$	11010010

Decimal to Two's Complement with 8-bit values

 (high-order bit is the sign bit)For positive values, use same algorithm as unsigned

```
For example, 6: 6 - 4 = 2 (4:2')
    2 - 2 = 0 (2:21): 00000110
```

For negative values:

1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation
```
For example, -3:
    3:00000011
    negate: 11111100+1=11111101=-3
```


What is the 8 -bit, two's complement representation for -7 ?

For negative values:

1. convert the equivalent positive value to binary
2. then negate binary to get the negative representation
A. 11111001
B. 00000111
C. 11111000
D. 11110011

What is the 8 -bit, two's complement representation for -7 ?

For negative values:

1. convert the equivalent positive value to binary
2. then negate binary, add 1 , to get the negative representation
A. 11111001
B. 00000111

$$
\begin{aligned}
-7 & =(1) 7: \quad 00000111 \\
& \text { (2) negate: } 11111000+1=11111001
\end{aligned}
$$

C. 11111000
D. 11110011

Addition \& Subtraction

- Addition is the same as for unsigned
- One exception: different rules for overflow
- Can use the same hardware for both
- Subtraction is the same operation as addition
- Just need to negate the second operand...
- 6-7=6+(-7)=6+(~7+1)
$-\sim 7$ is shorthand for "flip the bits of 7 "

Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:

$$
6-7==6+\sim 7+1
$$

4-bit signed Examples:

Subtraction via Addition:

- $a-b$ is same as $a+\sim b+1$

Subtraction: flip bits and add 1
$3-6=0011$
1001 (6: 0110 ~6: 1001)
$+\frac{1}{1101}=-3$

Addition:
$3+-6=$
0011

$$
+\frac{1010}{1101}=-3
$$

By switching to two's complement, have we solved this value "rolling over" (overflow) problem?
A. Yes, it's gone
B. Nope, still here
C. It's even worse

By switching to two's complement, have we solved this value "rolling over" (overflow) problem?
A. Yes, it's gone
B. Nope, still here
C. It's even worse

Overflow, Revisited

If we add a positive number and a negative number, will we have overflow? (Assume they are the same \# of bits)
A. Always
B. Sometimes
C. Never

If we add a positive number and a negative number, will we have overflow? (Assume they are the same \# of bits)
A. Always
B. Sometimes
C. Never

So what did we just talk about...?

Your TODO List

- HW1, Lab 1
- The next 12 weeks: Read the readings before class

Two's Complement Overflow For Addition

- Addition Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!
sign of operands = sign of result

$3+4=7$	$-2+-3=-5$
0011	1110
$+\underline{0100}$	$+\underline{1101}$
0111	1011

Two's Complement Overflow For Addition

- Addition Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!
sign of operands $=$ sign of result of result

$3+4=7$	$-2+-3=-5$
0011	1110
$+\frac{0100}{0111}$	$+\frac{1101}{1011}$

	overflow
$4+7=11$ $-6-8=-14$ 0100 1010 $+\frac{0111}{1011}$ $\frac{+1000}{0010}$	

Recall: Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:

$$
6-7==6+\sim 7+1
$$

Let's call this possible +1 input: "Carry in"
(0: on add, 1 : on subtract)

How many of these unsigned operations have overflowed?
Interpret these as 4-bit unsigned values (valid range 0 to 15):

$$
\begin{array}{rl}
\text { Addition (carry-in }=0) \\
9+11 & =1001+1011+0= \tag{-3}\\
9+6 & =1001+0110+0=1 \\
9+6 & =0100 \\
3+0011+0110+0=0 & 1111 \\
3
\end{array}
$$

Subtraction (carry-in = 1)

How many of these unsigned operations have overflowed?
Interpret these as 4-bit unsigned values (valid range 0 to 15): Notice a Pattern?

$$
\begin{aligned}
&\text { Addition (carry-in }=0) \\
& 9+11=1001+1011+0 \\
& 9+6=1001+0110+0=1 \\
& 9+0=0100=4 \\
& 3+6=1111=15 \\
& 3+011+0110+0=0=001=9
\end{aligned}
$$

Subtraction (carry-in = 1) $6-3=0110+1100+1=1 \quad 0011=3$
$3-6=0011+\underbrace{1001}_{(-6)}+1=0 \quad 1101=13$
A. 1
B. 2
C. 3
D. 4
E. 5

How many of these unsigned operations have overflowed?
Interpret these as 4-bit unsigned values (valid range 0 to 15): Notice a Pattern?

$$
\begin{aligned}
&\text { Addition (carry-in }=0) \\
& 9+11=1001+1011+0 \\
& 9+6=1001+0110+0=1 \\
& 9+0=0100=4 \\
& 3+6=1111=15 \\
& 3+011+0110+0=0=001=9
\end{aligned}
$$

Subtraction (carry-in = 1) $6-3=0110+1100+1=1 \quad 0011=3$
$3-6=0011+\underbrace{1001}_{(-6)}+1=0 \quad 1101=13$
B. 2
C. 3
D. 4
E. 5

Overflow Rule Summary

Unsigned: overflow

- The carry-in bit is different from the carry-out.

| $C_{\text {in }}$ | $C_{\text {out }}$ | $\mathrm{C}_{\text {in }}$ XOR $C_{\text {out }}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Two's Complement Overflow For Subtraction

Subtraction Overflow Rules Summarized:

- Overflow occurs IFF the sign bits of the subtraction operands are different, and the sign bit of the Result and Subtrahend are the same as shown below:
- Minuend - Subtrahend = Result
- If positive - negative = negative (overflow)
- If negative - positive = positive (overflow)

Two's Complement Overflow For Subtraction

- Rule 1:

Minuend
Subtrahen

Result

- $\overbrace{\text { Positive operand }} \overbrace{\text { - Negative operand = Positive Result: No Overflow }}$
- Positive operand - Negative operand = Negative Result: Overflow
- Intuition: We know a positive - negative is equivalent to a positive + positive.
- If this sum does not result in a positive value we have an overflow

Subtrahend and Result have different sign bits

Subtrahend and Result have the same sign bits

Two's Complement Overflow For Subtraction

- Rule 2:

Minuend
λ

Subtrahen

Result

- Negative operand - Positive operand = Negative Result: No Overflow
- Negative operand - Positive operand = Positive Result: Overflow
- Intuition: We know a negative - positive number is equivalent to a negative + negative number.
- If this sum does not result in a negative value we have an overflow

Subtrahend and Result have different sign bits

Subtrahend and Result have the same sign bits
overflow

Two's Complement Overflow For Subtraction

- Rule 1:

Minuend
Subtrahen
Result
$\overbrace{\text { _ }}^{\text {d }} \overbrace{\text { _ }}^{\text {d }}$

- Positive operand - Negative operand = Positive Result: No Overflow
- Positive operand - Negative operand = Negative Result: Overflow
- Intuition: We know a positive - negative is equivalent to a positive + positive.
- If this sum does not result in a positive value we have an overflow
- Rule 2:

Minuend

Subtrahen

- Negative operand - Positive operand = Negative Result: No Overflow
- Negative operand - Positive operand = Positive Result: Overflow
- Intuition: We know a negative - positive number is equivalent to a negative + negative number.
- If this sum does not result in a negative value we have an overflow

Overflow Rule Summary

- Signed overflow:
- The sign bits of operands are the same, but the sign bit of result is different.
- Unsigned: overflow
- The carry-in bit is different from the carry-out.

$C_{\text {in }}$	C $_{\text {out }}$	$C_{\text {in }}$	XOR
0	0	$C_{\text {out }}$	
0	1	0	
1	0	1	
1	1	1	
		0	

So far, all arithmetic on values that were the same size. What if they're

Sign Extension

When combining signed values of different sizes, expand the smaller value to equivalent larger size:

```
char y = 2, x = -13;
short z = 10;
    z = z + y;
    z = z + x;
0000000000001010
+ 00000010
0000000000000010
\[
\begin{gathered}
z=z+x ; \\
0000000000000101 \\
+\quad 11110011 \\
+111111111110011
\end{gathered}
\]
```

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.

Let's verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

0111	$--->$	0000	0111	obviously still 7
1010	$--->$	1111	1010	is this still -6?

$-128+64+32+16+8+0+2+0=-6$ yes!

Operations on Bits

- For these, it doesn't matter how the bits are interpreted (signed vs. unsigned)
- Bit-wise operators (AND, OR, NOT, XOR)
- Bit shifting

Bit-wise Operators

- Bit operands, Bit result (interpret as appropriate for the context)

$$
\&(A N D) \mid(O R) \quad \sim(N O T) \quad \wedge(X O R)
$$

A	B	A	$\&$	B	A	\mid	B	$\sim \mathrm{A}$
0	0	0	A	${ }^{\wedge}$	B			
0	1	0	1	1	0			
1	0	0	1	1	1			
1	1	1	1	0	1			
		1	0	0				

$$
\begin{array}{r}
01101010 \\
\& 10111011 \\
\hline 00101010
\end{array} \quad \frac{01010101}{01110101} \quad \begin{aligned}
& 10101010 \\
& 01101001 \\
& 11000011
\end{aligned} \quad \begin{array}{r}
\sim 10101111 \\
01010000
\end{array}
$$

More Operations on Bits (Shifting)

```
Bit-shift operators: << left shift, >> right shift
01010101 << 2 is 01010100
    2 high-order bits shifted out
    2 ~ l o w - o r d e r ~ b i t s ~ f i l l e d ~ w i t h ~ 0 , ~
01101010 << 4 is 10100000
01010101 >> 2 is 00010101
01101010 >> 4 is 00000110
1 0 1 0 1 1 0 0 ~ \gg ~ 2 ~ i s ~ 0 0 1 0 1 0 1 1 ~ ( l o g i c a l ~ s h i f t )
    or 11101011 (arithmetic shift)
```

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Try some 4-bit examples:

bit-wise operations:

- 0101 \& 1101
- 0101|1101

Logical (unsigned) bit shift:

- $1010 \ll 2$
- $1010 \gg 2$

Arithmetic (signed) bit shift:

- $1010 \ll 2$
- $1010 \gg 2$

Try some 4-bit examples:

bit-wise operations:

- $\quad 0101$ \& $1101=0101$
- 0101 | $1101=1101$

Logical (unsigned) bit shift:

- $1010 \ll 2=1000$
- $1010 \gg 2=0010$

Arithmetic (signed) bit shift:

- $1010 \ll 2=1000$
- $1010 \gg 2=1110$

Summary

- Images, Word Documents, Code, and Video can represented in bits.
- Byte or 8 bits is the smallest addressable unit
- N bits can represent 2^{N} unique values
- A number is written as a sequence of digits: in the decimal base system
$-\left[d n * 10^{\wedge} n\right]+\left[d n-1\right.$ * $\left.10^{\wedge} n-1\right]+\ldots+\left[d 2\right.$ * $\left.10^{\wedge} 2\right]+\left[d 1\right.$ * $\left.10^{\wedge} 1\right]+\left[d 0\right.$ * $\left.10^{\wedge} 0\right]$
- For any base system:
$-\left[d n * b^{\wedge} n\right]+\left[d n-1\right.$ * $\left.b^{\wedge} n-1\right]+\ldots+\left[d 2\right.$ * $\left.b^{\wedge} 2\right]+\left[d 1\right.$ * $\left.b^{\wedge} 1\right]+\left[d 0\right.$ * $\left.b^{\wedge} 0\right]$
- Hexadecimal values (represent 16 values): $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
- Each hexadecimal value can be represented by 4 bits. (2^4=16)
- A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit value is 255 .
- Trying to represent a value >255 will result in an overflow.
- Two's Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

