
Welcome! Do now:

1. Finish readings before
you continue (1.0-1.1, 1.4,
4.0-4.2)

2. Register your iClicker:
forms.gle/uDx8Ejc7DWdh5b
dd7

Stable Diffusion

https://forms.gle/uDx8Ejc7DWdh5bdd7
https://forms.gle/uDx8Ejc7DWdh5bdd7

CS31: Introduction to
Computer Systems

Dr. Sukrit Venkatagiri
Swarthmore College

Dive into Systems by Matthews, Newhall, and Webb Stable Diffusion

Week 2, Class 1
Data Representation

01/30/24

Announcements
• Lab 1 is due Thursday, 11:59pm

• HW1 is due Friday, 11:59pm
• up to groups of four
• invitations sent from gradescope

• Clickers will count for credit from Tuesday, February 6th

Agenda
Data representation

• number systems + conversion
• data types, storage
• sizes, representation
• signedness

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable

functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Data Storage

• Lots of technologies out there:
– Magnetic (hard drive, floppy disk)
– Optical (CD / DVD / Blu-Ray)
– Electronic (RAM, registers, …)

• Focus on electronic for now
– We’ll see (and build) digital circuits soon

• Relatively easy to differentiate two states
– Voltage present
– Voltage absent

Bits and Bytes
• Bit: a 0 or 1 value (binary)

– HW represents as two different voltages
• 1: the presence of voltage (high voltage)
• 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …
(address) [0] [1] [2] …

• Other names:
– 4 bits: Nibble
– “Word”: Depends on system, often 4 bytes

Files
Sequence of bytes… nothing more, nothing less

Binary Digits (BITs)

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits?
Why?
• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits?
Why?
• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?
1 bit: 0 1

How many values?
1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

How many values?
1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

How many values?
1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

C types and their (typical!) sizes
• 1 byte: char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long, double
• 4 or 8 bytes: long, unsigned long

unsigned long v1;
short s1;
long long ll;

// prints out number of bytes
printf(“%lu %lu %lu\n”, sizeof(v1), sizeof(s1), sizeof(ll));

How do we use this storage space (bits) to represent a
value?

WARNING: These sizes are NOT a
guarantee. Don't always assume that
every system will use these values!

Let’s start with what we know…

• Digits 0-9

• Positional numbering

• Digits are composed to make larger numbers

• Known as Base 10 representation

Decimal number system (Base 10)

• Sequence of digits in range [0, 9]

64025

Digit #0: 1’s place, “least significant
digit”

Digit #4: “most significant digit”

Digit #1: 10’s place

Decimal: Base 10

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, represents the value:

[dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100
60000 + 4000 + 0 + 20 + 5

Binary: Base 2
• Used by computers to store digital values.

• Indicated by prefixing number with 0b

• A number, written as the sequence of N digits,
dn-1…d2d1d0, where d is in {0,1}, represents the
value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 *
20]

Converting Binary to Decimal

Representation:1 x 27 + 0 x 26 ... + 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20

 128 + + 8 + 4 + 2 + 1

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Hexadecimal: Base 16

Indicated by prefixing number with 0x

A number, written as the sequence of N digits,

 dn-1…d2d1d0,

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, represents:

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]

Generalizing: Base b

The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

in base b represents the value:

[dn-1 * bn-1] + [dn-2 * bn-2] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

Base 10: [dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

Other (common) number systems.

• Base 2: How data is stored in hardware.
• Base 8: Used to represent file permissions.
• Base 10: Preferred by people.
• Base 16: Convenient for representing memory addresses.
• Base 64: Commonly used on the Internet, (e.g. email

attachments).

It’s all stored as binary in the computer.

Different representations (or visualizations) of the same information!

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits dn-1…d2d1d0 where d is in
{0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits dn-1…d2d1d0 where d is in
{0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of 0x1B7 in decimal?

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]
 (Note: 162 = 256)

A. 397
B. 409
C. 419
D. 437
E. 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

What is the value of 0x1B7 in decimal?

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]
 (Note: 162 = 256)

A. 397
B. 409
C. 419
D. 437
E. 439

1*162 + 11*161 + 7*160 =

256 + 176 + 7 = 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Important Point…

• You can represent the same value in a variety of number
systems or bases.

• It’s all stored as binary in the computer.
– Presence/absence of voltage.

Hexadecimal: Base 16

• Fewer digits to represent same value
– Same amount of information!

• Like binary, the base is power of 2

• Each digit is a “nibble”, or half a byte.

Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth of
information.

• We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
 1 B 7

Converting Decimal -> Binary

• Two methods:
– division by two remainder
– powers of two and subtraction

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: example: D = 105 b0 = 1
 D = b D = 52 a1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting
105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting
105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D = D/2 D = 26 b2 = 0
 D = D/2 D = 13 b3 = 1
 D = D/2 D = 6 b4 = 0
 D = D/2 D = 3 b5 = 1
 D = D/2 D = 1 b6 = 1
 D = 0 (done) D = 0 b7 = 0

 105 = 01101001

Example: Converting
105

Method 2
• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128
•

To convert 105:
– Find largest power of two that’s less than 105 (64)
– Subtract 64 (105 – 64 = 41), put a 1 in d6

– Subtract 32 (41 – 32 = 9), put a 1 in d5

– Skip 16, it’s larger than 9, put a 0 in d4

– Subtract 8 (9 – 8 = 1), put a 1 in d3

– Skip 4 and 2, put a 0 in d2 and d1

– Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0

1 01 1 0 0 1

What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,
25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,
25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

1 0 1 1 0 0 1 0 1
 d8 d7 d6 d5 d4 d3 d2 d1 d0

357 – 256 = 101
101 – 64 = 37

37 – 32 = 5
5 – 4 = 1

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

We can always add 0’s to the front of a number without changing it:

10110= 010110 = 00010110 = 0000010110

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

• 1 byte: char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long, double
• 4 or 8 bytes: long, unsigned long

Additional Info: Fractional binary numbers

0 1-1….-11982 15 999…99

−1
2

1
8

1
2

How do we represent fractions in binary?

Slide 59

Additional Info: Representing Signed Float Values

• One option (used for floats, NOT integers)
– Let the first bit represent the sign
– 0 means positive
– 1 means negative

• For example:
– 0101 -> 5
– 1101 -> -5

• Problem with this scheme?

Additional Info: Floating Point
Representation

1 bit for sign sign | exponent | fraction |
 8 bits for exponent
 23 bits for precision

 value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010
 sign = 0 exp = 129 fraction = 2902458

 = 1*1.2902458*22 = 5.16098

I don’t expect you to memorize this

