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Agenda

• Basics of C programming
• Comments, variables, print statements, 

loops, conditionals, etc.
• NOT the focus of this course
• Ask questions if you have them!

• Comparison of C vs. Python
• Data organization and strings
• Functions



The First “Computers”: Women

ENIAC was 
developed 10 
mi from here, 
at UPenn



What is C?

Dennis Ritchie 
worked at Bell Labs

C Unix
C was created for systems programming 
back in 1972.

C was created to write Unix.

Machine / 
Hardware

first transistor, solar cell, compilers,
C, C++, Unix, deep learning, + more!



Why C in this course?
Have you watched the Wizard of Oz?



What was going on behind the curtains?



More than what you would think!



The mystery revealed!

What the…



Python versus C: Paradigms
Python and C follow different programming paradigms.

• C:
– is procedure-oriented 
– breaks down to functions

• Python:
– follows an object-oriented paradigm (as do C++ and Java)
– allows Python to break down objects and methods



So, the point(er) is….?
• Programming languages are tools

– Python is one language and it does its job well
– C is another language and it does its job well

• Pick the right tool for the job
– C is a good language to explore how the system works under-the-hood.
– C is the Language of Systems Programmers: Fast running OS code that 

exposes the details of the hardware is really important!

• It’s the right tool for the job we need to accomplish in this course!



Hello World
Python C

# hello world
import math

def main():
   print “hello world”

main()

// hello world 
#include <stdio.h>

int main( ) {
  printf(“hello world\n”);
  return 0;
}
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Hello World
Python C

# hello world
import math

def main():
   print “hello world”

main()

// hello world 
#include <stdio.h>

int main( ) {
  printf(“hello world\n”);
  return 0;
}

#: single line comment //: single line comment
import libname:  include Python 
libraries

#include<libname>: include C libraries

Blocks: indentation Blocks:  {   }  (indent for readability)



To Blank Space or Not to Blank Space
• Python cares about how your program is formatted. Spacing has 

meaning.

• C compiler does NOT care. Spacing is ignored.
– This includes spaces, tabs, new lines, etc.
– Good practice (for your own sanity):

• Put each statement on a separate line.
• Keep indentation consistent within blocks.



Hello World
Python C

# hello world
import math

def main():
   print “hello world”

main()

// hello world 
#include <stdio.h>

int main( ) {
  printf(“hello world\n”);
  return 0;
}

#: single line comment //: single line comment
import libname:  include Python lib. #include<libname>: include C libraries
Blocks: indentation Blocks:  {   }  (indent for readability)
print: statement to printout string printf: function to print out format string
statement: each on separate line statement: each ends with ;
def main(): : the main function 
definition

int main( ) : the main function definition 
  (int specifies the return type of main)



Types
• Everything is stored as bits.

• Type tells us how to interpret those bits.

• “What type of data is it?”
– integer, floating point, text, etc.



Type Matters!

• No self-identifying data
– Looking at a sequence of bits doesn’t tell you what they mean
– Could be signed, unsigned integer
– Could be floating-point number
– Could be part of a string

• The machine interprets what those bits mean!



Types in C
• All variables have an explicit type!

• You (programmer) must declare variable types.
– Where: at the beginning of a block, before use.
– How: <variable type> <variable name>;

• Examples:
int humidity;   float temperature;
humidity = 20;  temperature = 32.5



Numerical Type Comparison
Integers (int)
• Example:
 int humidity;

humidity = 20;

• Only represents integers
• Small range, high 

precision
• Faster arithmetic
• (Maybe) less space 

required

Floating Point (float, double)
• Example:
 float temperature;
 temperature = 32.5;

• Represents fractional 
values

• Large range, less 
precision

• Slower arithmetic

I need a variable to store a number, which type should I 
use? Use the one that fits your specific need best…



Operators: consider the type

• Arithmetic: +, -, *, /,  %  (numeric type operands)
/:  operation and result type depends on operand types:

• Two int operands:  int division truncates the result  →  3/2 is 1
• One or two float or double operands: floating-point division →  3.0/2 is 1.5

%: mod operator:  (only int or unsigned types)
• Gives you the (integer) remainder of division

        13 % 2  is 1              27 % 3  is 0



Operators: consider the type
• Shorthand operators:

• var = var op expr;           var op= expr;             
   x += 4   is equivalent to   x = x + 4

      int y = 4;
      y *= 2;  

• var = var+1; var++; 
var = var+1; var--; 

• x++   is same as  x = x + 1       x--  is same as x = x -1;
• ++x and –x are different from x++ and x– (we’ll talk about this later)

What is the value of y?



Boolean (true/false) values in C
• There is no “boolean” type in C!

• Instead, integer expressions used in 
conditional statements are interpreted as 
true or false 

• Norm: Zero (0) is false, any non-zero 
value is true

• Questions?

• “Which non-zero value does it use?”



Operators: consider the type

• Relational (operands any type, result integer “boolean”):
• <, <=, >, >=, ==, !=       

•  6 != (4+2)  is 0 (false)
• 6 > 3    some non-zero value (we don’t care which one) (true)

• Logical (operands int “boolean”, result integer “boolean”):
• !   (not):          !6           is 0  (false)
• &&   (and):     8 && 0  is 0  (false)
• ||   (or):          8 || 0    is non-zero (true)



Conditional Statements

Very similar to Python, just remember { } are blocks

Basic if statement: With optional else: 
If (<boolean expr>) {
  if-true-body
} 

if (<boolean expr>) {
  if-true-body
} else {
  else body(expr-false)
}

Chaining if-else if With optional else:
if (<boolean expr1>) {
  if-expr1-true-body
} else if (<bool expr2>){
  else-if-expr2-true-body
  (expr1 false)
}
... 
} else if (<bool exprN>){
  else-if-exprN-true-body
}

if (<boolean expr1>) {
  if-expr1-true-body
} else if (<bool expr2>){
  else-if-expr2-true-body
}
...
} else if (<bool exprN>){
  else-if-exprN-true-body
} else {
  else body
  (all exprX’s false)
} 



While Loops

• Basically identical to Python while loops:
  while (<boolean expr>) {
     while-expr-true-body
  }

x = 20;
while (x < 100) {
  y = y + x;
  x += 4;    //  x = x + 4;
}
<next stmt after loop>;

x = 20;
while (1) {  // while true
  y = y + x;
  x += 4;
  if (x >= 100) {
     break;  // break out of loop 
  }
}
<next stmt after loop>;



For loops: different than Python’s 
for (<initialize>; <condition>; <step>) {
   for-loop-body-statements
}
<next stmt after loop>;

1. Evaluate <inititialize> one time, when first eval for statement
2. Evaluate <condition>, if it is false, drop out of the loop (<next stmt after loop>)
3. Evaluate the statements in the for loop body
4. Evaluate <step>
5. Goto step (2)

for (i = 1; i <= 10; i++) {  // example for loop
   printf(“%d\n”, i*i);
}



printf function

• Similar to Python’s formatted print statement, with a few 
differences:

• C: need to explicitly print end-of-line character (\n)
• C: string and char are different types

    ‘a’: in Python is a string, in C is a (single) char
    “a”: in Python is a string, in C is a string

Python: print  “%d %s\t %f”  % (6, “hello”, 3.4)

C: printf(“%d %s\t %f\n”,  6, “hello”, 3.4);

 printf(<format string>, <values list>);

%d int placeholder (-13)
%f or 
%g

float or double placeholder (9.6)

%c char placeholder     (‘a’)
%s string placeholder  (“hello 

there”)
\t \n tab character, new line 

character



Data Collections in C
• Many complex data types out there (CS 35)

• C has a few simple ones built-in:
– Arrays
– Structures (struct)
– Strings (arrays of characters)

• Often combined in practice, e.g.:
– An array of structs
– A struct containing strings



Arrays
• C’s support for collections of values

– Array buckets store a single type of value
– Specify max capacity (num buckets) when you 

declare an array variable (single memory chunk)
    <type> <var_name>[<num buckets>];
        int arr[5];  // an array of 5 integers
    float rates[40]; // an array of 40 floats



• C’s support for collections of values
• Often accessed via a loop:

int arr[5];  // an array of 5 integers
float rates[40]; // an array of 40 floats
for (i=0; i < 5; i++) {
   arr[i] = i;

   rates[i] = (arr[i]*1.5)/4;

}

Get/Set value using brackets [] to index into 
array.

arr

[0] [1] [2] [3] [4]

Arrays



Array Characteristics

int january_temps[31];  // Daily high temps

• Indices start at 0! Why?
• Array variable name means, to the compiler, the beginning of 

the memory chunk. (The memory address)
– january_temps” (without brackets!) Location of january_temps[0] in 

memory.
– Keep this in mind, we’ll return to it soon (functions).

“january_temps
”

Location of [0] 
in memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket 
indices.



Array Characteristics

int january_temps[31];  // Daily high temps

• Indices start at 0! Why?
• The index refers to an offset from the start of the array

– e.g., [3] means “three integers forward from the starting address”

“january_temps
”

Location of [0] 
in memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket 
indices.



Array Characteristics

int january_temps[31];  // Daily high temps

• Asking for january_temps[35]?

“january_temps
”

Location of [0] 
in memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket 
indices.

[35]

C does NOT do bounds checking. 
• Python: error
• C: “Sure! I don’t care ..” <ominous silence while bad things 

happen>



Your TODO List

• Now: Submit partner survey

• Now: Buy an iClicker

• Before lab tomorrow: Complete Lab 0

• By 11:59pm Thursday: Lab 1 is due

• By 11:59pm Friday: Complete HW1, submit to gradescope

• The next 13 weeks: Read the readings before class



Characters and Strings
• A character (type char) is numerical value that holds one letter.

 char my_letter = ‘w’; // Note: single quotes

• What is the numerical value?
– printf(“%d   %c”, my_letter, my_letter);
– Would print:  119   w

• Why is ‘w’ equal to 119? 
– American Standard Code for Information Interchange (ASCII) standard 

says so.



Characters 
and Strings

$ man ascii

119 = w



Characters and Strings
• A character (type char) is numerical value that holds one letter.
• A string is a memory block containing characters, one after 

another…, with a
null terminator (numerical 0) at the end.

• Examples:
 char food[6] = “Pizza”;

P i z z a
[0] [1] [2] [3] [4]

name (Other memory)

Hmm, suppose we used printf and %s to 
print name.

How does it know where the string ends and 
other memory begins?



Specia
l stuff 
over 
here in 
the 
lower 
values
.

0 is the
“Null 
character”

Characters 
and Strings

$ man ascii



Characters and Strings
• A character (type char) is numerical value that holds one letter.
• A string is a memory block containing characters, one after 

another, with a null terminator (numerical 0) at the end.
• Examples:
 char name[20] = “Pizza”;

P i z z a
[0] [1] [2] [3] [4]

\0
[5]

…
[6] [7] [18][19]



Strings in C
• C String library functions: #include <string.h>

– Common functions (strlen, strcpy, etc.) make strings easier
– Less friendly than Python strings

• More on strings later, in labs.

• For now, remember about strings:
– Allocate enough space for null terminator!
– If you’re modifying a character array (string), don’t forget to set the 

null terminator!
– If you see crazy, unpredictable behavior with strings, check these two 

things!



structs
• Treat a collection of values as a single type:

– C is not an object oriented language, no classes
– A struct is like just the data part of a class

• Rules:
1. Define a new struct type outside of any function
2. Declare variables of the new struct type
3. Use dot notation to access the field values of a struct variable



Struct Example
Suppose we want to represent a student type.

struct student {
 char name[20];
 int grad_year;
 float gpa;
};
// Variable bob is of type struct student
struct student bob;
// Set name (string) with strcpy()
strcpy(bob.name, “Robert Paulson”);  
bob.grad_year = 2019;
bob.gpa = 3.1;

printf(“Name: %s, year: %d, GPA: %f”, bob.name, bob.grad_year, bob.gpa);



Arrays of Structsstruct student {
 char name[20];
 int grad_year;
 float gpa;
};
//create an array of struct students!
struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2014
classroom[0].gpa = 4.0;

// With a loop, create an army of Alice clones!
int i;
for (i = 0; i < 50; i++) {
 strcpy(classroom[i].name, “Alice”);
 classroom[i].grad_year = 2014;
 classroom[i].gpa = 4.0;
}



Arrays of Structs
struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2019;
classroom[0].gpa = 4.0;

strcpy(classroom[1].name, “Bob”);
classroom[1].grad_year = 2020;
classroom[1].gpa = 3.1

strcpy(classroom[2].name, “Cat”);
classroom[2].grad_year = 2021;
classroom[2].gpa = 3.4



Struct: Layout in Memory

‘A’ ‘l’ ‘i’ ‘c’ ‘e’ ‘\0’ … ‘B’ ‘o’ ‘b’ ‘\0’ … ‘C’ ‘a’ ‘t’ ‘\0
’

…

2019 2020 2021

4.0 3.1 3.4

classroom:

[0] [1] [2]



Functions: Specifying Types
Need to specify the return type of the function, and the type of each parameter:

<return type> <func name> ( <param list> ) {
    // declare local variables first
    // then function statements
  return <expression>;
}

// my_function takes 2 int values and returns an int
int my_function(int x, int y) {  
  int result;
  result = x;
  if(y > x) {
    result = y+5;
  }
  return result*2; 
}

Compiler will yell at you if 
you try to pass the wrong 
type!



Function Arguments
Arguments are passed by value

– The function gets a separate copy of the passed variable
int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;  
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:
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Function Arguments
Arguments are passed by value

– The function gets a separate copy of the passed variable
int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;  
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

func:
a:

b:

4

7



Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;  
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

func:
a:

b:

9

7

Note: This doesn’t 
change!

No impact on values in main!

Function Arguments



Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;  
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

2

Function Arguments



Function Arguments
Arguments are passed by value

– The function gets a separate copy of the passed variable
int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;  
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

2

Output:  4, 2



Fear not!
• Don’t worry, I don’t expect you to have mastered C
• It’s a skill you’ll pick up as you go
• We’ll revisit these topics when necessary

• When in doubt: solve the problem in logically, use a whiteboard, 
whatever else!
– Translate to C later
– Eventually, you’ll start to “think in C”



Up next…

• Bits, Bytes, Binary (data representation)


