
CS31: Introduction to
Computer Systems

Dr. Sukrit Venkatagiri
Swarthmore College

Dive into Systems by Matthews, Newhall, and Webb Stable Diffusion

Week 1, Class 2
Introduction to
C Programming

01/25/24

 Where are we?
C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

C

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

C

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

C

OS

 Where are we?
Wk Lecture Lab
1 Intro to C C Arrays, Sorting
2 Binary Representation, Arithmetic Data Rep. & Conversion
3 Digital Circuits Circuit Design
4 ISAs & Assembly Language ’’
5 Pointers and Memory Pointers and Assembly
6 Functions and the Stack Binary Maze
7 Arrays, Structures & Pointers ’’

Spring Break
8 Storage and Memory Hierarchy Game of Life
9 Caching ‘’
10 Operating System, Processing Strings
11 Virtual Memory Unix Shell
12 Parallel Applications, Threading ‘’
13 Threading pthreads Game of Life
14 Threading ‘’

C

x86 Assembly

Binary

compiled

programming language

instruction set architecture

logic / bits

assembled

CPU / memory

logic gates, circuits

logic / bits

voltage

CS31: Introduction to
Computer Systems

Dr. Sukrit Venkatagiri
Swarthmore College

Dive into Systems by Matthews, Newhall, and Webb Stable Diffusion

Week 1, Class 2
Introduction to
C Programming

01/25/24

Agenda

• Basics of C programming
• Comments, variables, print statements,

loops, conditionals, etc.
• NOT the focus of this course
• Ask questions if you have them!

• Comparison of C vs. Python
• Data organization and strings
• Functions

The First “Computers”: Women

ENIAC was
developed 10
mi from here,
at UPenn

What is C?

Dennis Ritchie
worked at Bell Labs

C Unix
C was created for systems programming
back in 1972.

C was created to write Unix.

Machine /
Hardware

first transistor, solar cell, compilers,
C, C++, Unix, deep learning, + more!

Why C in this course?
Have you watched the Wizard of Oz?

What was going on behind the curtains?

More than what you would think!

The mystery revealed!

What the…

Python versus C: Paradigms
Python and C follow different programming paradigms.

• C:
– is procedure-oriented
– breaks down to functions

• Python:
– follows an object-oriented paradigm (as do C++ and Java)
– allows Python to break down objects and methods

So, the point(er) is….?
• Programming languages are tools

– Python is one language and it does its job well
– C is another language and it does its job well

• Pick the right tool for the job
– C is a good language to explore how the system works under-the-hood.
– C is the Language of Systems Programmers: Fast running OS code that

exposes the details of the hardware is really important!

• It’s the right tool for the job we need to accomplish in this course!

Hello World
Python C

hello world
import math

def main():
 print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
 printf(“hello world\n”);
 return 0;
}

Hello World
Python C

hello world
import math

def main():
 print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
 printf(“hello world\n”);
 return 0;
}

#: single line comment //: single line comment

Hello World
Python C

hello world
import math

def main():
 print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
 printf(“hello world\n”);
 return 0;
}

#: single line comment //: single line comment
import libname: include Python
libraries

#include<libname>: include C libraries

Hello World
Python C

hello world
import math

def main():
 print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
 printf(“hello world\n”);
 return 0;
}

#: single line comment //: single line comment
import libname: include Python
libraries

#include<libname>: include C libraries

Blocks: indentation Blocks: { } (indent for readability)

To Blank Space or Not to Blank Space
• Python cares about how your program is formatted. Spacing has

meaning.

• C compiler does NOT care. Spacing is ignored.
– This includes spaces, tabs, new lines, etc.
– Good practice (for your own sanity):

• Put each statement on a separate line.
• Keep indentation consistent within blocks.

Hello World
Python C

hello world
import math

def main():
 print “hello world”

main()

// hello world
#include <stdio.h>

int main() {
 printf(“hello world\n”);
 return 0;
}

#: single line comment //: single line comment
import libname: include Python lib. #include<libname>: include C libraries
Blocks: indentation Blocks: { } (indent for readability)
print: statement to printout string printf: function to print out format string
statement: each on separate line statement: each ends with ;
def main(): : the main function
definition

int main() : the main function definition
 (int specifies the return type of main)

Types
• Everything is stored as bits.

• Type tells us how to interpret those bits.

• “What type of data is it?”
– integer, floating point, text, etc.

Type Matters!

• No self-identifying data
– Looking at a sequence of bits doesn’t tell you what they mean
– Could be signed, unsigned integer
– Could be floating-point number
– Could be part of a string

• The machine interprets what those bits mean!

Types in C
• All variables have an explicit type!

• You (programmer) must declare variable types.
– Where: at the beginning of a block, before use.
– How: <variable type> <variable name>;

• Examples:
int humidity; float temperature;
humidity = 20; temperature = 32.5

Numerical Type Comparison
Integers (int)
• Example:
 int humidity;

humidity = 20;

• Only represents integers
• Small range, high

precision
• Faster arithmetic
• (Maybe) less space

required

Floating Point (float, double)
• Example:
 float temperature;
 temperature = 32.5;

• Represents fractional
values

• Large range, less
precision

• Slower arithmetic

I need a variable to store a number, which type should I
use? Use the one that fits your specific need best…

Operators: consider the type

• Arithmetic: +, -, *, /, % (numeric type operands)
/: operation and result type depends on operand types:

• Two int operands: int division truncates the result → 3/2 is 1
• One or two float or double operands: floating-point division → 3.0/2 is 1.5

%: mod operator: (only int or unsigned types)
• Gives you the (integer) remainder of division

 13 % 2 is 1 27 % 3 is 0

Operators: consider the type
• Shorthand operators:

• var = var op expr; var op= expr;
 x += 4 is equivalent to x = x + 4

 int y = 4;
 y *= 2;

• var = var+1; var++;
var = var+1; var--;

• x++ is same as x = x + 1 x-- is same as x = x -1;
• ++x and –x are different from x++ and x– (we’ll talk about this later)

What is the value of y?

Boolean (true/false) values in C
• There is no “boolean” type in C!

• Instead, integer expressions used in
conditional statements are interpreted as
true or false

• Norm: Zero (0) is false, any non-zero
value is true

• Questions?

• “Which non-zero value does it use?”

Operators: consider the type

• Relational (operands any type, result integer “boolean”):
• <, <=, >, >=, ==, !=

• 6 != (4+2) is 0 (false)
• 6 > 3 some non-zero value (we don’t care which one) (true)

• Logical (operands int “boolean”, result integer “boolean”):
• ! (not): !6 is 0 (false)
• && (and): 8 && 0 is 0 (false)
• || (or): 8 || 0 is non-zero (true)

Conditional Statements

Very similar to Python, just remember { } are blocks

Basic if statement: With optional else:
If (<boolean expr>) {
 if-true-body
}

if (<boolean expr>) {
 if-true-body
} else {
 else body(expr-false)
}

Chaining if-else if With optional else:
if (<boolean expr1>) {
 if-expr1-true-body
} else if (<bool expr2>){
 else-if-expr2-true-body
 (expr1 false)
}
...
} else if (<bool exprN>){
 else-if-exprN-true-body
}

if (<boolean expr1>) {
 if-expr1-true-body
} else if (<bool expr2>){
 else-if-expr2-true-body
}
...
} else if (<bool exprN>){
 else-if-exprN-true-body
} else {
 else body
 (all exprX’s false)
}

While Loops

• Basically identical to Python while loops:
 while (<boolean expr>) {
 while-expr-true-body
 }

x = 20;
while (x < 100) {
 y = y + x;
 x += 4; // x = x + 4;
}
<next stmt after loop>;

x = 20;
while (1) { // while true
 y = y + x;
 x += 4;
 if (x >= 100) {
 break; // break out of loop
 }
}
<next stmt after loop>;

For loops: different than Python’s
for (<initialize>; <condition>; <step>) {
 for-loop-body-statements
}
<next stmt after loop>;

1. Evaluate <inititialize> one time, when first eval for statement
2. Evaluate <condition>, if it is false, drop out of the loop (<next stmt after loop>)
3. Evaluate the statements in the for loop body
4. Evaluate <step>
5. Goto step (2)

for (i = 1; i <= 10; i++) { // example for loop
 printf(“%d\n”, i*i);
}

printf function

• Similar to Python’s formatted print statement, with a few
differences:

• C: need to explicitly print end-of-line character (\n)
• C: string and char are different types

 ‘a’: in Python is a string, in C is a (single) char
 “a”: in Python is a string, in C is a string

Python: print “%d %s\t %f” % (6, “hello”, 3.4)

C: printf(“%d %s\t %f\n”, 6, “hello”, 3.4);

 printf(<format string>, <values list>);

%d int placeholder (-13)
%f or
%g

float or double placeholder (9.6)

%c char placeholder (‘a’)
%s string placeholder (“hello

there”)
\t \n tab character, new line

character

Data Collections in C
• Many complex data types out there (CS 35)

• C has a few simple ones built-in:
– Arrays
– Structures (struct)
– Strings (arrays of characters)

• Often combined in practice, e.g.:
– An array of structs
– A struct containing strings

Arrays
• C’s support for collections of values

– Array buckets store a single type of value
– Specify max capacity (num buckets) when you

declare an array variable (single memory chunk)
 <type> <var_name>[<num buckets>];
 int arr[5]; // an array of 5 integers
 float rates[40]; // an array of 40 floats

• C’s support for collections of values
• Often accessed via a loop:

int arr[5]; // an array of 5 integers
float rates[40]; // an array of 40 floats
for (i=0; i < 5; i++) {
 arr[i] = i;

 rates[i] = (arr[i]*1.5)/4;

}

Get/Set value using brackets [] to index into
array.

arr

[0] [1] [2] [3] [4]

Arrays

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why?
• Array variable name means, to the compiler, the beginning of

the memory chunk. (The memory address)
– january_temps” (without brackets!) Location of january_temps[0] in

memory.
– Keep this in mind, we’ll return to it soon (functions).

“january_temps
”

Location of [0]
in memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket
indices.

Array Characteristics

int january_temps[31]; // Daily high temps

• Indices start at 0! Why?
• The index refers to an offset from the start of the array

– e.g., [3] means “three integers forward from the starting address”

“january_temps
”

Location of [0]
in memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket
indices.

Array Characteristics

int january_temps[31]; // Daily high temps

• Asking for january_temps[35]?

“january_temps
”

Location of [0]
in memory.

[0] [1] [2] [3] [4] [29][30]
…

Array bucket
indices.

[35]

C does NOT do bounds checking.
• Python: error
• C: “Sure! I don’t care ..” <ominous silence while bad things

happen>

Your TODO List

• Now: Submit partner survey

• Now: Buy an iClicker

• Before lab tomorrow: Complete Lab 0

• By 11:59pm Thursday: Lab 1 is due

• By 11:59pm Friday: Complete HW1, submit to gradescope

• The next 13 weeks: Read the readings before class

Characters and Strings
• A character (type char) is numerical value that holds one letter.

 char my_letter = ‘w’; // Note: single quotes

• What is the numerical value?
– printf(“%d %c”, my_letter, my_letter);
– Would print: 119 w

• Why is ‘w’ equal to 119?
– American Standard Code for Information Interchange (ASCII) standard

says so.

Characters
and Strings

$ man ascii

119 = w

Characters and Strings
• A character (type char) is numerical value that holds one letter.
• A string is a memory block containing characters, one after

another…, with a
null terminator (numerical 0) at the end.

• Examples:
 char food[6] = “Pizza”;

P i z z a
[0] [1] [2] [3] [4]

name (Other memory)

Hmm, suppose we used printf and %s to
print name.

How does it know where the string ends and
other memory begins?

Specia
l stuff
over
here in
the
lower
values
.

0 is the
“Null
character”

Characters
and Strings

$ man ascii

Characters and Strings
• A character (type char) is numerical value that holds one letter.
• A string is a memory block containing characters, one after

another, with a null terminator (numerical 0) at the end.
• Examples:
 char name[20] = “Pizza”;

P i z z a
[0] [1] [2] [3] [4]

\0
[5]

…
[6] [7] [18][19]

Strings in C
• C String library functions: #include <string.h>

– Common functions (strlen, strcpy, etc.) make strings easier
– Less friendly than Python strings

• More on strings later, in labs.

• For now, remember about strings:
– Allocate enough space for null terminator!
– If you’re modifying a character array (string), don’t forget to set the

null terminator!
– If you see crazy, unpredictable behavior with strings, check these two

things!

structs
• Treat a collection of values as a single type:

– C is not an object oriented language, no classes
– A struct is like just the data part of a class

• Rules:
1. Define a new struct type outside of any function
2. Declare variables of the new struct type
3. Use dot notation to access the field values of a struct variable

Struct Example
Suppose we want to represent a student type.

struct student {
 char name[20];
 int grad_year;
 float gpa;
};
// Variable bob is of type struct student
struct student bob;
// Set name (string) with strcpy()
strcpy(bob.name, “Robert Paulson”);
bob.grad_year = 2019;
bob.gpa = 3.1;

printf(“Name: %s, year: %d, GPA: %f”, bob.name, bob.grad_year, bob.gpa);

Arrays of Structsstruct student {
 char name[20];
 int grad_year;
 float gpa;
};
//create an array of struct students!
struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2014
classroom[0].gpa = 4.0;

// With a loop, create an army of Alice clones!
int i;
for (i = 0; i < 50; i++) {
 strcpy(classroom[i].name, “Alice”);
 classroom[i].grad_year = 2014;
 classroom[i].gpa = 4.0;
}

Arrays of Structs
struct student classroom[50];

strcpy(classroom[0].name, “Alice”);
classroom[0].grad_year = 2019;
classroom[0].gpa = 4.0;

strcpy(classroom[1].name, “Bob”);
classroom[1].grad_year = 2020;
classroom[1].gpa = 3.1

strcpy(classroom[2].name, “Cat”);
classroom[2].grad_year = 2021;
classroom[2].gpa = 3.4

Struct: Layout in Memory

‘A’ ‘l’ ‘i’ ‘c’ ‘e’ ‘\0’ … ‘B’ ‘o’ ‘b’ ‘\0’ … ‘C’ ‘a’ ‘t’ ‘\0
’

…

2019 2020 2021

4.0 3.1 3.4

classroom:

[0] [1] [2]

Functions: Specifying Types
Need to specify the return type of the function, and the type of each parameter:

<return type> <func name> (<param list>) {
 // declare local variables first
 // then function statements
 return <expression>;
}

// my_function takes 2 int values and returns an int
int my_function(int x, int y) {
 int result;
 result = x;
 if(y > x) {
 result = y+5;
 }
 return result*2;
}

Compiler will yell at you if
you try to pass the wrong
type!

Function Arguments
Arguments are passed by value

– The function gets a separate copy of the passed variable
int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

Function Arguments
Arguments are passed by value

– The function gets a separate copy of the passed variable
int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

Function Arguments
Arguments are passed by value

– The function gets a separate copy of the passed variable
int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

func:
a:

b:

Function Arguments
Arguments are passed by value

– The function gets a separate copy of the passed variable
int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

func:
a:

b:

4

7

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

7

func:
a:

b:

9

7

Note: This doesn’t
change!

No impact on values in main!

Function Arguments

Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

2

Function Arguments

Function Arguments
Arguments are passed by value

– The function gets a separate copy of the passed variable
int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main() {
 // declare two integers
 int x, y;
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

4

2

Output: 4, 2

Fear not!
• Don’t worry, I don’t expect you to have mastered C
• It’s a skill you’ll pick up as you go
• We’ll revisit these topics when necessary

• When in doubt: solve the problem in logically, use a whiteboard,
whatever else!
– Translate to C later
– Eventually, you’ll start to “think in C”

Up next…

• Bits, Bytes, Binary (data representation)

