
CS 31 Homework 3: Circuits Due at the start of class Saturday, February 17, 2024

Your names (include all members of your group):

1. Fill in the truth table for the following circuit. Note that this circuit is using NOT, XOR, NOR, NAND, and AND gates.

X	у	Z	$\boxed{\mathtt{OP_1}(\mathrm{x},\mathrm{y},\mathrm{z})}$	$ \mathbf{OP_2}(\mathbf{x}, \mathbf{y}, \mathbf{z}) $
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

2. Construct a circuit that implements the following truth table. You may use any of the following one- or two-input gates: NOT, AND, OR, XOR, NAND, NOR, XNOR. Write out the boolean expression for $\mathsf{OP_1}$ and $\mathsf{OP_2}$ before attempting to draw the circuit.

HINT: For \mathbb{OP}_1 , can you describe each case when the output is 1? How would you combine all the cases into a single circuit? Repeat this for \mathbb{OP}_2 .

X	у	z	$OP_1(x, y, z)$	$OP_2(x, y, z)$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

(Scratch space in case you want it.)