Using Image Processing Projects to Teach CS1 Topics

Richard Wicentowski and Tia Newhall
Computer Science Department
Swarthmore College
Swarthmore, PA 10981

{richardw, newhally@cs.swarthmore.edu

ABSTRACT

As Computer Science educators, we know that students learn
more from projects that are fun and challenging, that seem
“real” to them, and that allow them to be creative in design-
ing their solutions. When we have students beating down
our office doors wanting to show us what they’ve done, we
know we have designed a project that truly meets its ped-
agogical goals. In CS1 courses, it is often difficult to come
up with large, real-world programming projects that are at
an appropriate level and that really excite students. This is
particularly true in the first half of the course when students
are learning basic programming and problem solving skills.
We found that assignments based on image processing are
an effective way to teach many CS1 topics. Because stu-
dents enjoy working on the projects, they come away with a
solid understanding of the topics reinforced by the projects.
In this paper, we discuss many ways in which image pro-
cessing could be used to teach CS1 topics. As an example,
we present two image processing projects that we use in our
CS1 course. These large, real-world programs are designed
so that students can successfully master them early in their
first semester of programming. Even though our CS1 course
is taught using the C programming language, these projects
could easily be used by a CS1 course in C, C++4, or Java.
We provide starting point code for Java and C versions of
the projects, and provide sample assignment write-ups on
our project webpage [12].

Categories and Subject Descriptors

K.3.2 [Computing Milieux]: COMPUTERS AND EDU-
CATION—Computer and Information Science Education

General Terms
Algorithms

Keywords

Computer Science Education, CS1, Image Processing Projects

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

S GCSE' 05, February 23-27, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-997-7/11/000255.00.

1. INTRODUCTION

At Swarthmore College, the computer science curriculum
offers a broad exposure to the discipline through three in-
troductory courses, which could be termed CS1, CS1.5, and
CS2. CS1 takes an imperative approach using C, often with
Roberts’ text [10]; CS1.5 takes a functional approach us-
ing Scheme with Abelson and Sussman’s text [1]; while CS2
takes an object-oriented approach using Java, often with
Goodrich and Tamassia’s text [6].

Our version of CS1 is called The Imperative Paradigm:
Uniz and C. It is an introduction to programming in the
C programming language, and we include an introduction
to Computer Science, Unix, and some data structures and
algorithms. Typically, we introduce a new feature of the C
language each week and give students one or more program-
ming assignments to reinforce this feature. We like to give
students several larger programming assignments during the
semester so they can experience the benefits of using good
modular design, using makefiles, and incremental implemen-
tation and testing.

We have found that projects based on image processing
are a good way to introduce larger, real-world projects early
in a CS1 course. We present as examples two image process-
ing projects that are used in our CS1 course. One version
manipulates greyscale images and can be used after teaching
arrays early in the semester. Typically, we provide much of
the shell of the program and students implement functions
to manipulate the image in different ways. The other ver-
sion manipulates color images and can be used after covering
compound data types, such as structs or classes, later in the
semester. For this version, students are required to design
more of the program themselves.

Most of our CS1 students list the image processing project
as their favorite from our course. As a result, we think it is
a good vehicle for demonstrating how data structures and
algorithms are used in practice, as well as for developing
communication, programming, and problem solving skills in
students. Based on our own observations, in semesters when
we use these assignments, our CS1 students have a better
understanding of arrays, and of the semantics of passing
arrays to functions, then they do in semesters when we have
not used these assignments.

An additional benefit of using these assignments is that
students feel a real sense of accomplishment in completing
them. The projects initially seem very large and difficult.
Students come to realize, however, that their solution to one
image manipulation feature can be used as a starting point
for adding other features. Thus, what students first see as a



daunting assignment turns out to be manageable. Nearly all
students implement the required parts. In addition, many
students add some impressive extra-credit features.

Our success with these projects made us realize other ways
in which image processing could be used to teach introduc-
tory CS topics. We are not proposing that one use only
image processing projects in CS1, but that there are numer-
ous points when image processing could be used to teach
CS1 topics.

There has been prior work on using image processing
projects in CS1 and CS2 courses [3, 2, 5, 7]. However, previ-
ous work presents either specific image processing projects
or image processing libraries. Our work focuses on how im-
age processing projects can be used more generally to meet
specific pedagogical goals. Additionally, we present survey
results measuring the effectiveness of the application of some
of our ideas. In Section 2 we discuss several of our ideas for
how to use image processing to teach CS1 topics. In Sec-
tion 3 we present our two image processing projects, we
discuss how they are used, and we present student reaction
to the projects, and we conclude in Section 4.

2. USING IMAGE PROCESSING IN CS1

Image processing can be used as an effective way to teach
a number of CS1 topics, including both one-dimensional and
multi-dimensional arrays, iteration, recursion, pointers, dy-
namic memory allocation, compound data types, sorting,
file I/O, functions, and function call semantics. In Java,
projects centered around image processing also can serve
as an introduction to teaching event-driven programming,
threaded programs, and GUI programming, as well as ex-
ploring issues associated with designing user interfaces. For
a CS1 course using an object-oriented language such as C++
or Java, a color and greyscale image processing project can
be used as a real-world example of inheritance; from Image
and Pixel base classes, specialized greyscale and color classes
can be derived.

For a CS1 class, an instructor would likely provide stu-
dents with a library or class containing the I/O routines
necessary for translating an image file to a 2-D array of pixel
values. In advanced classes, reading the raw image file may
itself be a challenging class project. Most modern image
formats are quite complex and require that students create
supporting data structures to translate the image file into
a 2-D array of pixels. For example, the GIF [4] file speci-
fication requires that an 8-bit color table be included with
the image, and the image data is compressed using LZW
compression, a modification of the Lemper-Ziv compression
algorithm. For students to extract a GIF image, they would
need to create a data structure to hold the color table, then
uncompress the image, mapping each pixel to its appropri-
ate color in the color table. This task is beyond the scope
of our CS1 course, but could be incorporated into a CS2
project.

Once the image has been stored into a two dimensional
array of pixels, there are numerous ways in which the im-
age array of pixels can be manipulated to produce different
effects on the image. Some effects give students real-life ex-
amples of the importance of finding a generalized solution
to a problem. For example, image tiling and splitting ef-
fects can be coded in a few lines if students find the general
recursive or iterative pattern for how the image is split at
each step. On the other hand, if students try to hard code

the solution for tiling or splitting an image, they could end
up writing hundreds of lines of code to implement the effect
(see the infinite splitting effect in Figure 2 as an example).

Image processing projects that require dynamic memory
allocation for the image array can be used to reinforce stu-
dents’ understanding of pointers, function call semantics,
type, and scope. Effects such as doubling the size of image
or rotating the image by an arbitrary angle require dynamic
memory allocation. When students are required to write
functions to perform such tasks, they need to have a good
understanding of pointers, including the ability to return a
dynamically allocated 2-dimensional array, and getting the
function prototype correct.

Image processing can be used as part of a larger problem
that focuses on problem solving. For example, an eight-
squares puzzle game with an image manipulation component
could be used as a complete assignment, or as an extension
of an earlier image processing project. Here students have to
solve a more difficult problem where they need to keep state
about the game board, modify the image after each step
to reflect the move made by the user, detect and disallow
invalid moves, and detect when the puzzle has been solved.
For the Java version of this assignment, it is straightforward
to add mouse click event handler methods for playing the
game; for the C version, a text interface may be used to read
in the user’s next move.

For CS1 courses in Java, there are many image process-
ing effects that can implemented because the Java Swing
library is part of the Java language and it is fairly easy to
use. Students can easily implement image processing ef-
fects in response to mousing events on a displayed image.
For example, zooming into an arbitrary part of the image
can be triggered by a mouse click, or arbitrarily rotating
an image can be triggered by a mouse press-move-release
sequence. Also, many drawing effects can be implemented
in response to mouse events. In fact, most parts of a sim-
ple painting program, such as Microsoft’s Paint [8], could
be implemented as modifications to a displayed image; in
response to mouse events, an eye dropper effect to select a
color, a paint brush effect with different brush widths and
brush types, a copy and paste effect, and an image cropping
effect can be implemented.

3. OUR IMAGE PROCESSING PROJECTS

The primary goal of our CS1 project is to reinforce arrays
and compound data types through the use of a real world ap-
plication. We also accomplish a number of secondary goals:
to illustrate the importance of good modular design; to il-
lustrate the importance of implementing and testing code
incrementally; to show the importance of efficiency and gen-
eralization in designing algorithms; to give students practice
implementing sorting algorithms; to give students practice
using makefiles; and to provide an opportunity for students
to work in teams.

Our image processing project takes an image file as input,
and then provides a menu or GUI interface to the user to
select different image manipulation features such as blurring
the image or rotating the image. Students implement each
image modification as a separate function. Each image ma-
nipulation function takes the two dimensional image array
as input. To solve the assignment, students must know how
arrays are passed to functions, how to access array elements,
and how to develop algorithms for processing the pixel array



to get the desired effect.

Extra credit parts are used to challenge some of the more
ambitious students. Some of the image manipulation fea-
tures we suggest as extensions are quite difficult (like ro-
tating the image to an arbitrary angle). We also encourage
students to come up with their own features. This is a nice
way to allow for some creativity and flexibility in a course
where the assignments are often completely defined.

3.1 Greyscalelmage Processing Project

The greyscale image processing project is given to stu-
dents during the sixth week of class after introducing arrays
and simple sorting algorithms. At that point in the semester,
students have written functions, they know about local vari-
ables and scope, they have done some simple I/O, and they
may have learned about C libraries. They have not, how-
ever, written large programs, nor do they know pointers or
dynamic memory allocation, nor have they had to explicitly
link in library code to build an executable file.

As a starting point, we give students a compiled image
extraction and display library (such as a .so or .class file).
The library contains functions to convert between an image
file and a two-dimensional array of pixel values, and func-
tions to display the modified image. We use the Java Swing
Library [11] for Java, and libtiff and Tcl/Tk [9] for C. In the
C version, image manipulations are stored to a temporary
file that is then displayed by the GUI image viewer written
in Tcl/Tk. The Tcl/Tk parts of our code could easily be
replaced by code that uses an external image viewing pro-
gram, like xv or a web browser, to view the modified image
file after the user selects an effect.

We additionally give students a starting point source file
containing a partially complete main function that calls some
initialization functions in the image display library, a main
loop function that prints a menu and reads in the user’s
menu option, and function prototypes for some of the im-
age processing features they will implement. In the Java
version, instead of a menu, the starting point code creates
GUI buttons with associated action methods that will call
the student-implemented image manipulation methods. We
also provide a complete makefile for students to use to com-
pile their program.

We provide function prototypes in this assignment’s start-
ing point because function writing is still quite new to the
students, and because the syntax required for passing two
dimensional arrays as parameters can be tricky. We also
provide them with prototypes because we want them to see
how a good, modularly designed solution is structured. Our
survey results (see Section 3.3) show that the majority of
our students feel that providing them with function proto-
types was important to their successful completion of this
project.

Students are required to implement a number of different
image manipulation features, and are encouraged to imple-
ment extra features. For example, in the past we have re-
quired 15 features including making a negative of the image,
flipping the image vertically and horizontally, switching the
top left and bottom right corners, darkening, lightening, po-
larizing, scrolling both horizontally and vertically, zooming
in (to the center or any of the four corners), blurring, rotat-
ing 90 degrees, sorting the rows by pixel value, and reverting
to the original image (the other effects are cumulative). An
example of some of these is shown in Figure 1. Some ex-

Example Image Processing Features.
Top Row, from left: revert to original, make neg-
ative, scroll vertically by some number of pixels
(200 in this example). Middle Row: Rotate 90 de-
grees, Zoom (center zoom chosen), Sort Rows by
pixzel value. Bottom Row: Flip Vertically, Darken

Figure 1:

Image, Blur Image. (Grace Hopper image from
www.arlingtoncemetery.net/ghopper.htm)

tra features we propose are edge detection, an eight-squares
puzzle effect, displaying a histogram of pixel values, splitting
the image, tiling effects, and rotating the image by an ar-
bitrary degree amount. We provide students some pointers
to on-line documentation about some of these effects. An
example of some of the effects is shown in Figure 2.

Initially, fifteen required image features sounds daunting.
However, students quickly see that by starting with some of
the easier effects, like producing the negative image, they
have a starting point for solving some of the more difficult
effects. Some effects, such as blurring the image, cannot be
done in-place on the image and require students to discover
that they need to make a temporary copy of the image to
correctly implement the effect. Students also need to be
careful about stepping beyond the row or column bounds in
their solutions. Often a strange looking result will help to
reinforce this.

A few of the effects are a bit odd, and are included mainly
for pedagogical reasons. For example, sorting the rows by
pixel value may not be a useful, real-world image effect, but
it is a nice way to have students implement a simple sorting
algorithm as part of a larger assignment. Another example is
the histogram effect where students must create a temporary
array for the histogram, step through every pixel in the 2-D
array to find the histogram values, and then figure out how
to modify the image so that it displays the histogram. One
tricky part to this effect is that the histogram may need to
be scaled. If, for example, a single pixel value occurs in the



Figure 2: Example Extra Credit Image Processing
Features. Top Row, from left: Eight Squares Puz-
zle, Edge Detect, Histogram of Pixel Values. Bottom
Row: Split Image Right, A Tiling Effect, “Infinite
Split”

image more than the number of pixels in the height of the
image, then the histogram bucket values need to be scaled
so that they can be represented by a bar that fits within the
height of the resulting image.

3.2 Color Image Processing Project

The color version of the project is introduced in the tenth
week of classes after we cover structs. A color image is ma-
nipulated as a two dimensional array of RGB pixel struc-
tures. The pixels can be implemented as a struct in C, a
class in C4++ or Java, or as a three element array. Since the
color version of the assignment comes later in the semester,
we do not give as much starting point code as we do for the
greyscale version. We still give students a complete makefile
and part of a main function containing calls to our image
processing library to create the initial 2-D array from an
input image file. However, students are responsible for de-
signing more of the program, including most of the function
prototypes, themselves. We also require that students im-
plement a solution that works for a color image of any size.
This is a good way to reinforce pointers and dynamic mem-
ory allocation.

Many of the greyscale image processing features can be
used in the color image assignment. In addition, students
implement color ”polarizing” features, where they shift all
red values (for example) to extremes based on a threshold
value. We have also taken pictures in front of a blue screen to
create images that students can use for implementing back-
ground replacing features. Students can replace the blue
background with different colors, different patterns, or with
another image.

Some of the greyscale effects cannot be easily implemented
in the full color version. For example, sorting rows by pixel
value and the histogram effects may not make a lot of sense
for color images. Of course, both effects could be done on a
single R, G, or B pixel value, or on a function of each pixel’s
RGB values, but the resulting image will be strange and stu-
dents can not easily tell if they have correctly implemented
the effect.

Project Helpful in Reinforcing Understanding of:

arrays in general 86%
semantics of passing arrays 83%
array data access/manipulation 90%
searching and sorting algorithms 67%

Table 1: Survey results showing percentage of stu-
dents who answered either ”very helpful” or ”help-
ful” to questions about how well the assignment
helped reinforce their understanding of arrays.

3.3 Student Responseto the Project

One of the most satisfying results of using these projects,
aside from meeting pedagogical goals, is that students really
enjoy them. It is so much easier for students to learn the
material if they are excited and motivated to do the work.

To better quantify how well our projects meet our peda-
gogical goals, we surveyed 42 students in our introductory
course about their experiences with the greyscale version of
our project. Overall the students enjoyed the project and
felt that it helped them to understand arrays. In Table 1
we show the percentage of students answering either “very
helpful” or “helpful” to questions about how well the project
help to reinforce their understanding of two-dimensional ar-
rays.

Of the surveyed students, over 80% said that they “really
enjoyed” or “enjoyed” the project, and only one student
didn’t like the project. Almost all students felt that it was
at about the right level of difficulty, and most stated that it
would have been difficult to complete without being given
the function prototypes for some effects. Although a few
students felt that the starting point code made the assign-
ment “slightly easy”, no student thought that it made the
assignment “too easy”. Given that students enter our intro-
ductory course with a wide range of previous programming
experience, it is not surprising that a few students would
find this assignment easy. Our survey results reinforced our
feeling that giving students the function prototypes is ap-
propriate for this assignment.

This is the first project where we strongly encourage stu-
dents to work in pairs, and we wanted to gauge student
reaction to this experience. Most students (36 out of 42)
worked with a partner on this project. Almost all found it
helpful to work with a partner; most mentioning that it was
nice to split up the work, and that working with a partner
was particularly useful for problem solving and debugging.
One student stated “I liked working with a partner because
we never got stuck for extended periods of time-whenever
one of us was stumped the other usually came up with the
solution.” Another student mentioned that working with a
partner “allowed us to brainstorm together and after dis-
cussing an idea we could come up with something that we
probably wouldn’t have thought up on our own.” The only
negative comments about working with a partner had to do
with managing scheduling difficulties.

On both the survey and on course evaluations from previ-
ous semesters we asked students what they liked or disliked
about the project and why. When we asked in course eval-
uations which assignment was the favorite and why, nearly
all students picked the image processing project. Most men-
tioned that it was fun and challenging. For example, one stu-




dent said “The image lab was the highlight of the course.”
Several students also liked that it was a real-world problem:
“I thought the picture lab was a lot of fun...[it] is nice to
see how programming can be used in real applications” and
“the graphics programs were awesome and very practical.”
Another student stated that she “thought it was a really
cool assignment—it gave us the opportunity to manipulate
images and actually feel like we were doing real program-
ming.” Another student stated that “I really enjoyed this
assignment and felt that it allowed me a chance to see the
effects of my program and develop some understanding of
how my programs work.”

Many students mentioned that they were surprised that
they could complete what seemed like a very large assign-
ment: “I liked this assignment because it gave us a chance
to put the skills we had learned to use and create a program
that produced visually impressive results. It seemed really
intimidating at first, but it went pretty quickly and it was
satisfying successfully implementing the effects.” Some stu-
dents also liked the open-ended aspect of the assignment:
“Pictures were cool because [it was] open-ended.” The only
negative comments we heard about the assignment was that
one student didn’t like that we gave them function proto-
types: “We were fiddling around with functions that were
already given.” Another student felt that the image manip-
ulation features were a bit too repetitive and would have
liked fewer features.

The survey results support what we had suspected about
these projects based on our interactions with students: our
students enjoy the projects, they like designing and imple-
menting extensions, they like that the projects are real-world
applications, and they feel a real sense of accomplishment
in completing the projects. The results also fit our observa-
tions that in semesters when we have used these projects,
students seem to have a better understanding of arrays and
of the semantics of passing arrays to functions.

4. CONCLUSIONS

Image processing projects are an effective pedagogical tool
for teaching a wide range of CS1 topics, including multi-
dimensional arrays, function call semantics, and modular
design. Although these are large programming projects,
they can be structured in such a way that CS1 students can
successfully complete them. Student reaction to these fun,
real-world applications of CS1 material has been overwhelm-
ingly positive, resulting in students who are more engaged
in learning. Students feel a real sense of accomplishment in
completing these projects and become more confident and
capable programmers.

5. REFERENCES

[1] Abelson, H., and Sussman, G. J. Structure and
Interpretation of Computer Programs, Second Edition.
McGraw Hill, 2001.

Astrachan, O., and Rodger, S. H. Animation,
visualization, and interaction in CS1 assignments.
Proceedings of the twenty-ninth SIGCSE technical
symposium on Computer science education (February
1998).

Burger, K. R. Teaching two-dimensional array
concepts in java with image processing examples.
Proceedings of the Thirty-Forth SIGCSE Technical

[2

3

(10]
(11]

(12]

Symposium on Computer Science Education
(February 2003).

Compuserve Information Service. Graphic Image
Format.

Fell, H. J., and Proulx, V. K. Exploring Martian
planetary images: C++ exercises for CS1. Technical
Symposium on Computer Science Education
Proceedings of the twenty-eighth SIGCSE technical
symposium on Computer science education (February
1997).

Goodrich, M. T., and Tamassia, R. Data Structures
and Algorithms in Java, Second Edition. John Wiley
and Sons, Inc., 2001.

Hunt, K. Using image processing to teach CS1 and
CS2. SIGCSE Bulletin 35, 4 (December 2003), 86-89.
Microsoft Corporation. Microsoft Paint.
http://www.microsoft.com/.

Ousterhout, J. K. An X11 toolkit based on the Tcl
language. Proceedings of USENIX Winter Conference
(1991).

Roberts, E. The Art and Science of C. Addison
Wesley, 1995.

Sun MicroSystems. Java Swing Library, part of the
Java 2 Platform. http://java.sun.com/j2se/.
Wicentowski, R., and Newhall, T. Two image
processing projects for a CS1 course.
www.cs.swarthmore.edu/ “newhall/imagemanip/.



