
Trying to do it all in a single course: a surprisingly good idea

Tia Newhall
Computer Science Department, Swarthmore College

Swarthmore, PA USA

Abstract—We present the curricular design and learning
goals of an upper-level undergraduate course that covers a wide
breadth of topics in parallel and distributed computing (PDC),
while also providing students with depth of experience and
development of problem solving, programming, and analysis
skills. We discuss lessons learned from our experiences teaching
this course over the past 10 years, and discuss changes and
improvements we have made in its offerings, as well as choices
and trade-offs we made to achieve a balance, in a single course,
between breadth and depth of topic across these two huge
fields. Evaluations from students support that our approach
works well meeting the goals of exposing students to a broad
range of PDC topics, building important PDC thinking and
programming skills, and meeting other pedagogical goals of an
advance upper-level undergraduate CS course. Although our
single course design was created due to constraints common
to smaller schools that have fewer faculty resources, smaller
curricula, and often fewer required courses for their majors,
our experiences with this course lead us to conclude that it
is a good approach for an advanced undergraduate course on
PDC at any institution.

Keywords-parallel and distributed computing; CS Education;
curriculum design.

I. INTRODUCTION

The ubiquity of multi-core processors, accelerators, cloud
computing, clusters, and other parallel and distributed plat-
forms, and the explosion of applications of parallel and
distributed computing solutions to an increasingly diverse
range of disciplines, has resulted in PDC knowledge and
skills being a core part of undergraduate computing curric-
ula. Recent ACM and IEEE curricular guidelines highlight
the importance of PDC topics: the ACM-IEEE CS2013
Curriculum [1] added a new knowledge area in Paral-
lel and Distributed computing; and the NSF/IEEE-TCPP
Curriculum Guidelines [2] further specify expanded details
on PDC curricula, and provide guidance and support for
incorporating these topics into the undergraduate computing
curriculum.

These efforts highlight the importance of incorporating
PDC topics throughout the curriculum, as well as expanding
upper-level undergraduate course offerings whose primary
focus is on parallel and distributed computing.

Smaller institutions, such as liberal arts colleges, have
more limited faculty resources, fewer curricular offerings,
and often a shallower prerequisite structure to their CS
major than departments at larger institutions. Large univer-
sities often have several course offerings on parallel and

distributed systems, architecture, languages, or algorithms
as part of their curricula. At smaller institutions, there is
often a single upper-level course devoted to a parallel or
distributed computing topic, limiting students’ exposure to
this increasingly important field. As a result, it is important
to expose undergraduate students to a large breadth of PDC
topics in what may be their only course option devoted
to advanced study in PDC. Our course was developed in
this context, under these curricular and teaching constraints
common to smaller departments.

In this paper we present the design of a single course on
parallel and distributed computing for undergraduates [3]. It
has an overall goal of exposing students to a large breadth
of parallel and distributed computing topics. Our course is
designed as an advanced upper-level undergraduate course,
with curricular and pedagogical goals of preparing students
for graduate studies in CS, and specific PDC curricular
goals of teaching students programming and problem solving
skills that will help prepare them for PDC related careers.
The ideal student in our course is a senior major who has
completed most of the CS major requirements. In practice,
we often have juniors and a handful of sophomore pre-
majors in the course, which means that we need to provide
some extra scaffolding to support a broad range of student
backgrounds in CS.

We structure the course as a mixed lecture-style and
seminar-style course. The seminar portion includes weekly
in-class discussions of PDC research papers, a large inde-
pendent course project, and multiple writing and oral presen-
tations. The lecture portion includes traditional lectures on
PDC systems, languages, algorithms and analyses, in-class
problem solving activities, lab assignments on a wide range
of parallel and distributed programming languages and tools,
and practice designing and running large-scale experiments.

Prior to this course, we offered a traditional distributed
systems class run purely in seminar-style. As PDC has
become more pervasive, we were less satisfied with a course
that focused only on distributed systems, and we wanted
to expand coverage of parallel computing topics, including
languages, tools, architectures, systems, algorithms, applica-
tions, and broader analyses. Our desire to include more of
this content was a significant driver of the development of
this course.

On the surface, a single course that tries to cover the
breadth of PDC is a bad idea. These two huge field span



most of CS, and are increasingly growing, pervasive, and
complex. Trying to “do it all” is impossible and even trying
to get close is likely to result in an unsatisfactory learning
experience.

In designing a course like ours, it is important to keep
in mind that you can’t do it all, and instead seek to
provide a balance between a large degree of breadth of topic
coverage and problem solving, while also including many
opportunities for in-depth coverage and developing deeper
problem solving, programming, analysis, and research skills.
Our course is designed to attempt this balance.

To date, we have taught our course 5 times over the past
10 years. We have learned many lessons along the way
for effectively designing and implementing a single course
curriculum that covers a huge range of topics and learning
goals. And, although our course was initially designed due
to constraints of CS at a small liberal arts college, we like
the breadth of coverage in this single course, and find its
design to be a good undergraduate-level course introducing
these fields. As a result, even in a larger and more resource-
rich department that has a large number of course offerings
in PDC topics, we think this is a good design for an
undergraduate level course in PDC. It provides a good
balance between breadth of exposure to topic and ideas with
depth of understanding, and we recommend our course for
any undergraduate curriculum, regardless of the constraints
of a particular institution.

In Section II we present related work in PDC curriculum,
tools and learning. In Section III we present details of
our curriculum and its learning goals, discuss trade-offs,
and present details of lab, writing, and active learning
assignments we use. In Section IV we present evaluations
by students who have taken the course. And in Sections V
and VI we present our evaluation of the course, and discuss
changes we have made and lessons we have learned.

II. RELATED WORK

Motivated by the increasing importance of PDC knowl-
edge as a part of the core undergraduate CS curricula, as well
as by growing demand for PDC skills by the work force,
there have been numerous contributions to help educators
incorporate and expand coverage of PDC in their curricula.
Some of these include model curricula and pedagogical
guides [4]–[10], and numerous teaching tools, training,
workshops, and other resources [11]–[13].

There has also been work related to active learning and
collections of unplugged classroom activities for teaching
PDC concepts [14]–[17]. Most of these are aimed at intro-
ductory sequence CS courses introducing parallel concepts
and parallel thinking. Our use of in-class activities is aimed
at upper-level undergraduate courses.

To our knowledge, ours is the only course that balances
covering a large breadth of PDC topics with some in-depth
study and investigation, that mixes a seminar-style paper

reading and discussion and project-based experience with
more traditional lecture and active learning experiences, that
includes many written and oral presentation components,
that fits at the level of an advanced upper-level undergraduate
course, and that is particularly designed for institutions with
room for only one upper-level course devoted exclusively to
PDC.

III. COURSE DETAILS

The topics we cover span the two huge fields of parallel
and distributed computing, each of which touch most parts
of CS, including architecture, systems, algorithms, appli-
cations, languages, and tools. Any sub-area alone could
fill an entire course. Thus, our single course curriculum
must be broad enough to touch on much of this vast range
of topics. A single course cannot cover everything, nor
cover all topics in the same amount of depth that a course
with a narrower focus could, such as a course on parallel
algorithms. However, to be a successful learning experience
it must provide multiple opportunities for both depth of
coverage and depth in development of problem solving and
PDC thinking skills.

Our approach is to focus on fundamental topics across a
broad range of areas in this field, through research paper
reading and discussion, lecture, and lab activities. We select
a specific theme to unify topics and to develop deeper
analytic skills. And we also provide an opportunity for deep
investigation into a specific topic through an independent
course project.

Each week, there is a seminar-style paper discussion
meeting and a lecture-style class meeting. Additionally, our
course has a scheduled lab meeting each week that we use
to introduce resources and tools necessary for assigned lab
work and course projects.

The primary learning goals of the course are to:
• understand the fundamental questions in parallel and

distributed computing and analyze different solutions
to these questions.

• understand different parallel and distributed program-
ming paradigms and algorithms, and gain practice in
implementing and testing solutions using these.

• analyze and critically discuss research papers, both in
writing and orally.

• formulate and evaluate a hypothesis by proposing,
implementing and testing a project, and relating one’s
project to prior research via a review of related litera-
ture.

• write a coherent, complete paper describing and evalu-
ating a project.

• orally present a clear and accessible summary of a
research work.

Additionally, our course satisfies the college’s require-
ments of a writing intensive course.



A. Student Preparation

Our institution, like most liberal arts colleges, has a
shallow pre-requisite structure. We start with a traditional
CS1 course, followed by two intermediate-level courses
(data structures and algorithms, and introduction to computer
systems), which serve as the only prerequisites to all upper-
level courses. Upper-level courses are divided into three
groups: theory and algorithms; systems; and applications.
Majors are required to take 5 upper-level courses, at least
one from each group.

Our intermediate-level introduction to systems course was
first added in 2012. It introduces computer organization,
operating systems, and parallel computing, focusing on
shared memory parallelism and threads. Students in this
course learn C, assembly, and pthreads programming. This
class is the keystone in a redesign of our curriculum [7]
that introduces parallelism early, allowing room to add and
expand parallel and distributed topics in many of our upper-
level courses that are not focused on PDC.

Because all students now enter our PDC course with expe-
rience in shared memory parallelism and pthreads program-
ming, we are able to immediately start with reviewing what
they know about parallel computing rather than introducing
parallelism. This allows us to expand breadth and depth of
PDC coverage in our course.

B. Paper Reading and Discussion

Each week students are assigned one or two papers
to read for class discussion. We split the larger classes
into two sections to foster a smaller seminar experience
and to ensure all students have appropriate opportunity to
participate. We provide students with instruction on how to
read CS research papers, and we use reading groups and
reaction notes assignments with each reading.

1) Reading Groups and Reaction Notes: To help prepare
students for in-class discussion we use paper reading groups
and assign reaction notes that are due before the in-class
discussion of the weekly paper reading assignment. Every
student is assigned to a reading group that is required to meet
before the in-class discussion and after each group member
has read the paper(s). Reading groups discuss the assigned
papers and draft their group’s reaction notes.

There are three parts to reaction notes: a high-level sum-
mary of the main idea of the paper; an answer to a focused
question about the paper; and a list of 2-4 questions from
the group’s discussion of the paper, ones they feel are most
interesting or unresolved. Group members take turns finaliz-
ing and submitting the write-up of the group’s reaction notes,
which are due before class. Instructors usually have time to
skim through reaction notes prior to in-class discussion; this
helps us to call on students who are reluctant participators
to answer a question we know their group discussed, or to
see if there are some common misconceptions, interesting
analyses, or questions that we should include.

The reading group meetings ensure that students are
better prepared for in-class discussion and result in better
participation and deeper discussions in class. They also
seem to put students more at ease participating in class
discussions.

2) Selecting Papers and Paper Topics: The focus of
paper topics differs in the first and second halves of the
course. In the first half, papers focus on languages, tools,
and libraries for parallel and distributed computing. This
gives students background on tools they will use in labs
and course projects. In the second half, papers focus more
broadly on PDC topics such as cloud computing, grid
computing, distributed file systems, peer-to-peer systems,
security, green computing, consensus, and fault tolerance.
We choose more systems topics because this course satisfies
a Systems requirement for our major.

In addition to the split of paper topics, earlier papers must
be more accessible than papers assigned later in the semester,
after students know more of the field and have more practice
reading, analyzing, and discussing papers. In general, we
find that foundational papers on a topic, and summary papers
of a field, tend to be more accessible. The former generally
do not assume the reader has a large background in the field,
and the latter tend to be written for a more general audience.

Because students do not read a paper and prepare for in-
class discussion before the first week of class, we often use
the first week discussion meeting for a group building Guild
exercise [18]. We find this helps students see the different
strengths individuals bring to the group, and this often helps
alleviate group and partnership difficulties.

Additionally, we assign as the first ”paper” an oral
presentation by reading groups on a particular parallel or
distributed system. Each group is assigned a different type of
system (e.g. MPP, cluster, gpu, cloud, SMP), and we suggest
particular examples of each type on which they can focus
their presentation, including many taken from the Top500
and Green500 lists [19]. Groups prepare an oral presentation
of their system and deliver it at the weekly discussion session
in the second week of class. This first “paper” assignment
has several goals including: effectively working with their
reading group; investigating a system; and delivering an
oral presentation early in the semester. Students enjoy this
exercise learning details about a particular system. It also
helps later in the semester to expose students to a range of
systems early.

As an example, listed below are the set of weekly paper
assignments from the most recent offering of the course in
the spring of 2020 (note that the last two paper assignments
were cut due to changes in the semester resulting from the
COVID-19 pandemic). Additionally, the course webpage [3]
includes links to webpages from previous offerings of the
course, each of which includes the list of assigned papers
from that semester. In weeks with two assigned papers, often
one is the main focus paper and the other is a “quick read”



paper that provides additional background or breadth on a
topic.

• Oral presentation of a parallel or distributed system.
• “End-to-end arguments in system design” [20], and

“The design philosophy of the DARPA Internet Pro-
tocols” [21].

• “MPI: a message passing standard for MPP and work-
stations” [22] and “OpenMP: An Industry Standard API
for Shared Memory Programming” [23].

• “Scalable Parallel Programming with CUDA” [24],
and “OpenCL: A Parallel Programming Standard for
Heterogeneous Computing Systems” [25].

• “TreadMarks: Shared Memory Computing on Networks
of Workstations” [26].

• “MapReduce: Simplified Data Processing on Large
Clusters” [27].

• “Heterogeneous Computing: Here to Stay: Hardware
and Software Perspectives” [28], and one of our re-
search papers as an introduction to project ideas related
to our work.

• “The Google File System” [29].
• “A Guided Tour through Data-Center Network-

ing” [30], and “A View of Cloud Computing” [31].
• “The Byzantine Generals Problem” [32], and “Simple

Testing Can Prevent Most Critical Failures” [33]
• “Chord: A Scalable Peer-to-Peer Lookup Protocol for

Internet Applications” [34], and “What Is This Peer-to-
Peer About?” [35].

• “Computer Security in the Real World” [36] and “The
Internet Worm” [37].

C. Lecture

We use the lecture portion of the course to provide
background in parallel and distributed computing topics, and
to provide context for weekly paper readings. We include
details of specific algorithms, languages, and systems, and
introduce metrics for comparison and analyses. We use
scalability as the pervasive theme throughout the semester.
This theme is a good way to link the disparate set of topics
and techniques we discuss, and to provide a common metric
for analysis across topics.

Over time, we have expanded our use of group problem
solving activities in place of more traditional lecture. These
exercises benefit learning and help develop skills in group
problem solving and presentation. We designed a set of exer-
cises that span a range of PDC topics and focus on analysis
and comparison. The activities use a common structure and
include designating specific roles to individuals, namely:

• Group Spokesperson: presents the groups
answers/ideas/solutions to the class.

• Group Moderator: runs the group discussion, ensuring
that everyone gets a chance to share their ideas and
understands the group’s solution.

• Group Note Taker: takes notes on the group’s ideas to
help with discussion and presentation.

• Group Timer: ensures the group keeps moving appro-
priately and stays on task.

All group members participate in group discussion and
problem solving. and we ensure that individual students take
turns in different roles.

We developed the following problems for these in-class
group activities (in a given semester we use most of these):

• Questions on a paper that they read before class. This is
given very early in the semester, before the first paper
reading and in-class discussion. The goal is to provide
a structured practice of some of the types of questions
we want them to discuss in their paper reading groups,
using an example paper that is very accessible (we
use [38]).

• Questions comparing two different types of parallel
systems (usually a shared memory and a distributed
memory) on several metrics related to parallel computa-
tion and overheads, scalability, and types of parallelism
each support well. This exercise serves as a good
introduction to a number of topics and themes that we
revisit throughout the course.

• Developing a parallel algorithm for computing an op-
eration or function (e.g. sum). This includes big O
analysis and evaluating parallel overheads and scalabil-
ity expectations and limits of their algorithm. Students
often come up with unexpected techniques, resulting
in lively discussions and often providing a lead-in to
techniques we present in later lectures.

• Developing an algorithm to determine an ordering of
events in a distributed system. This exercise replaces
a lecture on time and event ordering in distributed
systems. We have been surprised that students come
up with ideas similar to Lamport’s Happens-Before [39]
relation for partial ordering, and centralized (and some-
times decentralized) solutions for agreeing to a total
ordering.

• Shorter assignments analyzing different algorithms pre-
sented in lecture. They compute both big O complexity
in terms of N and P, but also consider parallel and
distributed overheads, including those due to remote
memory access, and synchronization and communica-
tion. We typically do several of these each semester.

Over the years we have replaced more pure lecture with
these group problem solving activities, resulting in notice-
able improvements in students problem solving, engage-
ment, and oral presentation skills, and with their comfort
level participating in class. We still use more traditional
lecture, and feel it is important and has its place, but we
intersperse lecture with these group activities to achieve a
good balance of topic exposure and to build important skills
through practice and application.



D. Lab Assignments

The scheduled lab meeting each week has two purposes:
in the first half of the semester, we assign several pro-
gramming assignments to teach students a wide set of PDC
languages and tools; in the second half of the semester, we
help with, and monitor progress of, course projects, and
introduce tools for experimentation and for writing reports.

The first half labs include:

1) A scalability study of a reworked version of their
pthreads GOL program from the introduction to sys-
tems course. The goal is to gain practice designing
hypotheses and experiments to evaluate hypotheses,
and to analyze test results and convey them in written
form. It is also a reminder of parallelism, pthreads,
and C programming.

2) Implementing a distributed client/server application.
The goal is to learn TCP/IP socket programming. We
have used two versions of this assignment: a multi-
threaded web server and client, and a multi-threaded
chat server and client.

3) Implementing a Cuda [40] application using the Par-
aVis [41] library to visualize its parallel computation.
The goal is to learn GPGPU programming, making
use of visualization to help with debugging and with
finding errors in their parallelization. The particular
assignment is a 2D fire simulator, similar to GOL,
chosen so students focus more on the CUDA paral-
lelization than on the 2D discrete event simulation.

4) Implementing an MPI [22] application (usually odd-
even sort), and testing it on an XSEDE [42] cluster.
The goal is to learn message passing programming in
MPI, to implement an algorithm discussed in class,
and to gain practice using XSEDE resources.

5) A shorter OpenMP [23] assignment parallelizing a
sequential application. The goal is to learn how to
use OpenMP to incrementally parallelize loops given
a sequential application starting point.

We cannot cover every language and system in the first
half lab assignments, but we design labs to span a range
of parallel and distributed computing, choosing examples of
commonly used languages and tools. This provides experi-
ence with languages and systems that they may use in their
course project. With more time, we would add a lab on cloud
computing using some implementation of MapReduce [27],
and possibly another using a PGAS language [43].

E. Course Project

The independent project component of the course is
introduced mid-semester. At this point students have been
exposed to a breadth of topics, to programing in different
languages and paradigms, to reading and analyzing primary
research papers, and to using many tools and resources.

The project must have a main focus on parallel or dis-
tributed computing, must include some implementation and
experimentation and evaluation, and should be structured
around a general question that they are trying to answer.
Some groups focus more on implementation, while other
groups may have smaller implementation and focus much
more on experimentation and analyses (often scalability
studies).

We give students some ideas for project topics and invite
students to look for projects that combine something they
learned in other CS classes with parallel or distributed
computing. Students enjoy the open-endedness of this and
the opportunity to define their particular project in a broad
way.

To help students stay on track for successfully complet-
ing their course project, we assign four deliverable parts,
including:

1) Project Proposal and Annotated Bibliography. A
structured investigation, reading, and writing exercise
to help them define their course project and develop
a plan to carry it out. The annotated bibliography
requires investigative background reading of related
work. The proposal includes details of what they are
going to do and how they are going to do it. It allows
us to give early feedback on their project plan, and tips
for tools and resources or related projects that may be
helpful.

2) Midway Project Report and Oral Presentation
to class. A smaller writing requirement that follows
Project Work Week, a full week for students to solely
work on their course project. Midway requirements
include meeting with the professor and updating
their project schedule with changes to their plan and
timeline. Following Project Work Week, each group
presents their project to the class. It is the first time
that groups learn details of other’s projects, and is
an opportunity to get feedback from the class. The
presentation is also motivation for students to make
significant progress on their project during Project
Work Week.

3) Final Oral Presentation. Project groups prepare and
present their project to the class and the larger CS
community. These presentations are similar to CS
conference talks in design and content,.

4) Written Final Project Report and Demo. Students
submit a final project report that is structured like a
CS conference or journal paper. We provide guidelines
for the structure and focus, links to writing resources,
and include a “revise and resubmit” of their report
introduction. Students submit their project code and
give a demo of their project. The demo is an opportu-
nity for them to show off some of the implementation
details, to talk through difficulties they had along the



way, and to discuss features they would add next given
more time. It is a nice way to end the course.

Currently, we require that course projects are done in
pairs or small groups, and we no longer allow individual
course projects. This helps the instructor manage projects
as our class enrollments have significantly increased. More
importantly, we’ve found that group projects are stronger
projects, are much better experiences for our students, and
are more successful at achieving the learning goals we have
for this experience.

IV. STUDENT EVALUATION

We present results of students’ assessments of our course
over its most recent two offerings that include all of the
added learning exercises and support and changes we have
made to the course over 10 years. Student evaluations from
earlier offerings are similar to the ones we present here,
but include assessment of parts that we have removed or
changed, and miss assessment of parts we have added. The
results are from course surveys asking students to evaluate
parts of the course, what they learned, and their experiences
and feedback about the class.

We asked students about the structure of the class. Overall,
students like the balance of paper discussion and lecture
(Figure 1a). Among students who would like a different
distribution, there was more preference for increasing paper
reading and discussion (33%), than for increasing lecture
(14%). Almost all students mentioned that they like having
both, even those who preferred a different balance. A com-
mon theme in responses was summarized by one student
who said “both the lecture and discussion taught me a lot
and complemented one another.” Another said “I liked this
split actually because we were engaging in each section in
a different way and were learning content through a variety
of means.” A student who strongly preferred more paper
reading and discussion explained their reasoning “because
actively having to explain and discuss topics forces us to
understand the material so much more”, another describes
class discussions as “invaluable in deepening my understand-
ing. I loved most of the papers!” Students who wanted more
lecture indicated that this was because they wanted to cover
more material and background and to “delve into greater
details about different topics of the course”. Overall, paper
reading and discussion is the part of the course students like
best.

We asked students to evaluate how helpful in-lecture
group problems were to their understanding of PDC. Overall,
we received many “very helpful!” responses to this ques-
tion (78% in Figure 1b). One student noted that “figuring
out/discussing the problems in small groups allowed for
more ideas/info than working alone.” Another noted that
they were “quite helpful to gain intuition on the various
problems we explored.” Students particularly liked problems
that were more open-ended. A common theme in responses

was summarized by one student who said “discussing ideas
with peer[s] was a good way to bootstrap thinking/problem
solving.”

Roughly 14% had a neutral opinion about group problems,
and 8% found them less helpful than lecture. Those who
found them less helpful generally wanted more lecture in
order to cover more topics in class. A couple students
thought the problems were too easy, while a few more
said some were too difficult. Overall, the most common
complaint was that some problems were not completed in
a single class meeting. We continue refining to avoid this
problem, which is exacerbated by the fact that we only have
one lecture meeting per week.

Responses to questions about how well reading groups
and reaction notes prepared them for in-class discussion
were unanimously positive. Students found the reading
groups “very helpful” and valued the experience of dis-
cussing papers before class. Many comments were similar
to a student who said that it “was nice being able to hear the
kind of takeaways and questions my classmates got from the
same reading”, and others said “the groups ensured I spent
more time really trying to understand the papers” and “I felt
very prepared for in-class discussion.”

Students similarly felt that reaction notes helped prepare
them for paper discussions in class. A common theme in
responses was summarized by one student: “I found the
group reaction papers helpful in making sure each of us
understood the paper, filling in gaps in our understandings,
and gave us the opportunity to discuss/prepare for class.”
Another student summarized group discussion and reaction
notes as “very helpful to help me synthesize information,
discuss questions about the papers, and make sure that I
kept up with the readings” another said that they resulted
in “forcing me to read more carefully and feeling more
confident to contribute in class.” The only complaints about
reading groups and reaction notes were from earlier offerings
of the course where students felt reaction notes grading was
unclear. We have since shared our grading rubrics to resolve
this issue.

We also asked students about the difficulty of the assigned
labs in the first half of the course, and if labs were useful
in preparing for course projects. Overall, students found
the labs to be very helpful and appropriately challenging,
although a bit more challenging than other CS courses.
A common theme was summarized by a student: “They
were somewhat challenging, but at a reasonable level. They
definitely helped prepare us for the course project as we
learned how to use various tools for implementing parallel
and distributed systems.” Several students mentioned diffi-
culties with relearning C and C++ programming after several
semesters using Python in upper-level courses. Most felt
that the lab assignment instructions and supporting materials
were very helpful, and most felt that they were very good
preparation for their course projects. Almost all students



(a) Balance of Lecture and Paper Discussion (b) Helpfulness of in-class exercises to understanding
Figure 1: Students responses to questions about course structure (results as percentages).

really enjoyed the labs, even those who found some very
challenging, and stated that they learned a lot from them.
One student summarized the common response well as:
“Great labs, always a good degree of challenge, was great
to have knowledge of different P&D techniques going into
the final project.”

Another question asked how well prepared students felt
to do the final project. Students almost uniformally felt very
well prepared for the project, naming the lab assignments
and paper reading, discussions, and reaction notes as be-
ing particularly helpful. One student summarized student
responses well: “I think the lead up from the first half of the
semester to the project was really nice, especially because
it seemed like the project was a culmination of what we’ve
learned in the first half of the semester. The instructions
for each part were very thorough, and it was really helpful
guidance! So I feel we were very prepared to do each of
the parts of the final project.” Only a couple students felt
not as well prepared, but all of these responses were about
unexpected time commitments and constraints. In particular,
they wished they had more time for their midway project
deliverables. Several students who felt well prepared for
the project also mentioned that the midway report was a
bit too much, and we plan to cut it down some in the
future as a result of this feedback. A few students thought
there were too many deliverables along the way, but most
appreciated the guidance and checkpoints. One student’s
comment summarized a common response: “[the professor]
provided the necessary resources and guidance to complete
each step. It was nice to have built in time to work and
check ins throughout to make sure we kept on top of the
work.”

We also asked students three questions specific to course
learning goals, paraphrased as how has this class affected
your:

1) ability to analyze and critically read CS research
papers?

2) ability to formulate a research question and implement
an experiment to answer the question?

3) ability to write a clear and complete CS research

paper?
Universally, students express large improvement in all of

these abilities. The only exception was the second question,
where some students stated that they already had a lot of
experience with this, so their noted improvements were not
as large.

Students reported the largest improvements in their abil-
ity to critically read and analyze papers. Many expressed
sentiments like “I feel like I improved a ton in this regard”
or “my ability to read CS research papers has improved
dramatically!” All students reported significant gains in their
abilities. For example, one student said: “I realized how lost
I was reading these papers at first and how seamless it is
by the time we were doing it for our final project.” Another
said “I feel much more equipped to read and intelligently
discuss papers.”

Students also felt the course helped with formulating
research questions. Students commonly mentioned improve-
ments in experimentation and hypothesis formulation, such
as in “formulating questions to test functionality of a sys-
tem/program”, in “conducting experiments” and “especially
when experiments failed our first few trials”. Students with
some prior experience with CS research all mentioned
improvements in their abilities. One student summed up a
common theme with: “I think the project definitely helped
with my skills for formulating research questions! Although
I’ve done summer research, the research questions that we
had weren’t really mine, so I think this time I had more of
an experience in formulating a research question, which was
really nice.”

Finally, all students felt their ability to write a CS research
paper greatly improved, many using terms like “tremen-
dously” and “dramatically” in their responses. Most who
had little to no research and writing experience prior to this
course commented similarly to the student who said “I had
limited experience writing a computer science research paper
and feel my ability has improved significantly.” Another
expressed that “I feel like I learned a lot about what’s
expected of scientific writing in this class.” Some mentioned
how helpful the paper writing guidelines were to them: the



“outlines you provided for us for our project reports were
really helpful in starting a foundation for how to write papers
like this for computer science.” Students also reported that
paper reading and discussion helped with writing their own
paper.

Finally, we asked students why they took the course, if
it met their expectations, and if they had any additional
suggestions and feedback.

The two most common reasons for taking the course were
to satisfy the Systems requirement for the major and to learn
more about PDC. Universally, students enjoyed the course
and felt like they got a lot out of it. “I learned a ton and really
enjoyed the class.” Students who took it just to satisfy a
requirement were often surprised by how much they enjoyed
the course and how much they learned: “I actually ended up
learning a lot more than I expected and understanding a field
that I previously hadn’t given much thought to. This was by
far my most enjoyable CS class yet, even if I did find it quite
challenging.” Students who took it because of an interest in
PDC topics felt like they learned many useful skills, and that
it “did a great job of helping me understand these concepts.”

Students unanimously enjoyed the class, felt challenged
by it, and felt that they learned a lot from it. Paper reading
and discussion was the most popular part, one student
summarizing a common theme: “I loved the opportunity to
have a seminar type CS course, which is a type of course
I wished the CS department had more of”. The PDC topics
were also mentioned as important and “great to learn”, and
the labs as providing useful practice in PDC.

Overall, students found the course workload a bit high, but
manageable and very worthwhile. Over the years we have
added more guidelines and help, and reduced some content,
but we feel there is still room to tweak the lab and final
project workload a little, while still maintaining the primary
purpose of these activities.

A. Remote Class Experience

In the spring 2020 offering of the course, we moved to
all-remote teaching halfway through the semester due to
the COVID-19 pandemic. We asked students about their
experiences with the on-line transition and what worked well
and not so well. Their responses matched our impressions
well. Students thought the lecture and paper discussions
transitioned pretty well to on-line. One student noted that
the “small interactive seminars are much more conducive
for remote learning than larger lectures”. Dividing the class
in half for paper discussions helped to make this transition
to on-line easier than in a large lecture.

Students felt that labs and projects were the most difficult
to do remotely, some expressing they were “much more
difficult” to do in this setting. In response to moving to
all-remote instruction we offered students a second course
project option that was an in-depth research report with
little to no implementation and testing. Most groups chose

this option, and those that did felt that the original project
requirements would have been much more difficult to satisfy
working remotely.

Our observations agree with students. Overall, the course
transitioned fairly well to on-line. We had the advantage of
the first half of the semester being in-person, so students
were already used to working in groups. The more seminar-
style parts of the course transitioned better, as did the more
pure lecture content. Final project presentations also worked
very well remotely. In-class group problem solving was the
least satisfying on-line. We used Zoom break-out sessions,
which functionally worked well, but were very isolating,
with no easy way for us to read the room, suggest hints
or directions to the entire class, listen into group’s problem
solving in a non-intrusive way, or easily identify groups that
were stuck or not functioning well. We had students use
google docs in Zoom break-out sessions as a way to partially
address these challenges, but it was the part of the class
where both students and instructors noticed a significant loss
from the in-person experience.

A few groups attempted the original course project that
includes implementation and testing, and were successful
in completing strong projects. Most groups, however, chose
the alternate option. The groups that attempted the original
project expressed how difficult it was, and felt they were not
able to make as much progress as they would have in-person.
We also found it more difficult to help students on these
types of projects in an all-remote setting. Overall, we were
surprised by the high quality of final projects this semester,
under the circumstances of an unexpected remote semester,
and also with the college going to an all pass/fail grading
for the semester, which may have removed some motivation
for devoting a lot of time and effort to projects. The final
presentation may have helped motivate them some, but we
believe that the fact that students pick a project topic that
they are interested in learning more about was a primary
motivation for them to work hard.

Due to its structure, our course may be one that is easier
to transition to all on-line than a more traditional course
with lecture, labs, and exams. We also have no doubt that
the transition was easier due to having students in-person
for the first half of the semester. An only remote offering
would have been much more difficult for both students and
faculty, and given our observations of the transition, we are
certain that students would not have learned as much in an
all on-line offering.

V. INSTRUCTOR EVALUATION

Overall, we feel that our course is designed well to meet
its learning goals, and to cover much of the breadth of
PDC while still providing depth. Students like the mix of
lecture, labs, and paper reading and discussion, and we plan
to keep this mix as it is. One planned improvement to in-
class problems is to work on the timing to better ensure that



they are completed within a single class meeting; particularly
because the lecture portion meets only once per week, it
is difficult for groups to pick up from where they left off.
Reducing the number of questions with each exercise, and
being a bit more mindful of timing, will help us with this
in the future.

The paper readings and discussions and final projects are
the most satisfying parts of the course, both to the students
and the instructor. We observe large improvements in stu-
dents’ reading, writing, analyzing and oral presentation in
this class. Although some students wish for all seminar style,
most appreciate the mix of lecture and paper discussion, and
we also feel that this works well for an undergraduate level
course, particularly one in a CS curriculum without a deep
prerequisite hierarchy.

We have had difficulty finding an appropriate textbook
for this course, as there is not one alone that covers the
breadth of topics in our class. In the past we used Lin
and Snyder [44] for its focus on analyzing scalability of
parallel algorithms and including analyses of memory and
synchronization costs. The difficulty is that this content fits
only a small portion of our course’s topics, and students are
unhappy paying for a textbook that is not used on a weekly
basis. Currently, we use a mix of our own and other on-line
resources, textbooks, tutorials, and references [45]–[48].

We are often amazed by what students accomplish in this
class. All students improve in their confidence and abilities
participating in class, and in their abilities to problem solve,
analyze solutions, and ask important questions in PDC. We
also have had several students do further work on their
course project and get CS research paper or poster publi-
cations from their efforts. For students pursuing graduate
studies in particular, this course is good preparation with its
focus on reading, writing, presentations, and designing and
carrying out an independent project.

VI. LESSONS LEARNED

This is not a course that we would have developed had
it not been for some of the constraints imposed by a small
liberal arts college. In fact, trying to do it all is a recipe
for failure. However, there are a few keys to making this
successful.

The first is being willing to give up a lot of important
topics and interesting and cutting edge papers that you would
like to discuss. It will hurt, but it is obviously impossible
to do it all, and it works much better to focus on accessible
papers across the breadth of topics. Often these are survey
papers or more foundational papers on a topic. Fewer papers
also ensures students have time to read research papers
appropriately for understanding and to be prepared for in-
depth discussion. Over the years we have cut the total
number of papers assigned, and the result is that students
are better at reading and discussing them.

The second is designing the course around an overarching
theme to link the topics and provide a common depth of
focus. We chose scalability as a common theme that we
apply over and over to a broad range of topics and contexts.

The third is to ensure multiple opportunities for depth
within the main breadth of topic coverage. A course that
is all high-level survey will not develop the same parallel
and distributed thinking and analysis skills. The course
project is the primary way in which we achieve depth of
coverage, but paper reading and discussion, in-class problem
solving exercises, the focus of some lecture content, and lab
assignments also provide depth.

The fourth is to give students practice with a wide range of
PDC programming languages and tools. This helps students
to problem solve in different contexts, and to compare
different types of systems and applications. Teaching just
a single language or paradigm does not as easily develop
more broad PDC problem solving skills.

Finally, we suggest instructors tailor the course to their
specialty or interests. Although a course like this includes
broad coverage of systems, algorithms, tools, and languages,
there is still an opportunity to focus more generally on
areas of your expertise or ones in which you want to
learn more. For us, systems has been a larger focus, but
algorithms, languages, or applications could equally be the
larger focus. We also try to incorporate one or two papers
or lectures on topics of specific interest to us. This is a
good way to provide depth in a subfield, to spark student
interest in your own work, and to provide students with some
background instruction to prepare them for projects based on
your research area.

One of the most difficult parts of designing a course like
this is giving up some content and important pedagogical
experiences in order to maintain a good balance between
breadth and depth. Identifying and focusing on the primary
learning outcomes helps to prevent introducing a workload
that is counter productive to these goals.

VII. CONCLUSIONS

We presented the design and implementation details of
our undergraduate-level course on parallel and distributed
computing. Our course covers a large breadth of these
two immense fields, while also developing depth in PDC
thinking, problem-solving, programming, and analysis skills.
Its active learning exercises, paper reading and discussion,
and large course project further develop important skills for
students entering graduate school or the workforce.

Although our course was initially designed due to con-
straints of CS in a small institution, we like the breadth
of coverage in this single course, and find its design to be
a good undergraduate-level course introducing these fields.
From our 10 years developing and teaching our “doing it all
in one course” curriculum, we feel that a course like ours
would work well at any institution because it provides a large



view of two huge fields that undergraduate students may not
otherwise see, and its design includes many opportunities for
depth in specific topics and learning; this is an undergraduate
course we would want to teach regardless of the constraints
of our institution.

REFERENCES

[1] ACM/IEEE-CS Joint Task Force, “Computer science curric-
ula 2013,” www.acm.org/education/CS2013-final-report.pdf,
2013.

[2] The NSF/IEEE-TCPP Curriculum Working Group,
“NSF/IEEE-TCPP curriculum initiative on parallel and
distributed computing - core topics for undergraduates,”
http://www.cs.gsu.edu/∼tcpp/curriculum/, 2012.

[3] CS87: Parallel and Distributed Computing Course Webpages,
http://www.cs.swarthmore.edu/∼newhall/cs87.

[4] C. M. Brown, Y.-H. Lu, and S. Midkiff, “Introducing par-
allel programming in undergraduate curriculum,” in Parallel
and Distributed Processing Symposium Workshops and PhD
Forum IPDPSW, 2013 IEEE 27th International, May 2013.

[5] M. Grossman, M. Aziz, H. Chi, A. Tibrewal, S. Imam,
and V. Sarkar, “Pedagogy and tools for teaching parallel
computing at the sophomore undergraduate level,” J. Parallel
Distrib. Comput., vol. 105, no. C, Jul. 2017.

[6] R. Muresano, D. Rexachs, and E. Luque, “Learning parallel
programming: a challenge for university students,” Procedia
Computer Science, vol. 1, no. 1, 2010.

[7] T. Newhall, A. Danner, and K. C. Webb, “Pervasive parallel
and distributed computing in a liberal arts college curricu-
lum,” in Journal of Parallel and Distributed Computing, vol.
105, July 2017.

[8] D. J. John and S. J. Thomas, “Parallel and distributed com-
puting across the computer science curriculum,” in Parallel
and Distributed Processing Symposium Workshops IPDPSW,
2014 IEEE International, May 2014.

[9] C. T. Delistavrou and K. G. Margaritis, “Towards an inte-
grated teaching environment for parallel programming,” in
2011 15th Panhellenic Conference on Informatics, Sept 2011.

[10] J. Adams, R. Brown, and E. Shoop, “Patterns and exemplars:
Compelling strategies for teaching parallel and distributed
computing to CS undergraduates,” in Parallel and Distributed
Processing Symposium Workshops and PhD Forum IPDPSW,
2013 IEEE 27th International, May 2013.

[11] Center for Parallel and Distributed Computing Curriculum
Development and Educational Resources (CDER), https://
tcpp.cs.gsu.edu/curriculum/?q=node/21183.

[12] R. Brown, L. Shoop, and J. Adams, “CSinParallel,” https:
//csinparallel.org.

[13] D. Bunde and J. Mache, “Teaching parallel computing with
higher-level languages and activity-based laboratories,” http:
//faculty.knox.edu/dbunde/parallel.html.

[14] M. A. Kuhail, S. Cook, J. W. Neustrom, and P. Rao, “Teaching
parallel programming with active learning,” in 2018 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), May 2018.

[15] S. Srivastava, M. Smith, A. Ghimire, and S. Gao, “Assessing
the integration of parallel and distributed computing in early
undergraduate computer science curriculum using unplugged
activities,” in 2019 IEEE/ACM Workshop on Education for
High-Performance Computing (EduHPC), 2019.

[16] S. Matthews, “PDCunplugged: A free repository of un-
plugged parallel and distributed computing activities,” in 2020
IEEE/ACM Workshop on Parallel and Distributed Computing
Education (EduPar-20), 2020.

[17] S. K. Ghafoor, D. W. Brown, M. Rogers, and T. Hines,
“Unplugged activities to introduce parallel computing in
introductory programming classes: An experience report,” in
Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education ITiCSE’19, 2019.

[18] R. Wright and J. Boggs, “Learning cell biology as a team: A
project-based approach to upper-division cell biology,” Cell
biology education, vol. 1, 2002.

[19] The Top 500 and Green 500 Lists, https://www.top500.org.

[20] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end
arguments in system design,” ACM Trans. Comput. Syst.,
vol. 2, no. 4, Nov. 1984.

[21] D. D. Clark, “The design philosophy of the darpa internet
protocols,” ACM SIGCOMM Comput. Commun. Rev., vol. 25,
no. 1, Jan. 1995.

[22] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “A mes-
sage passing standard for mpp and workstations,” Commun.
ACM, vol. 39, no. 7, Jul. 1996.

[23] L. Dagum and R. Menon, “OpenMP: an industry standard
api for shared-memory programming,” IEEE Computational
Science and Engineering, vol. 5, no. 1, 1998.

[24] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with cuda: Is cuda the parallel program-
ming model that application developers have been waiting
for?” ACM Queue, vol. 6, no. 2, Mar. 2008.

[25] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems,”
IEEE Computing in Science Engineering, vol. 12, no. 3, 2010.

[26] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, Honghui Lu,
R. Rajamony, Weimin Yu, and W. Zwaenepoel, “Treadmarks:
shared memory computing on networks of workstations,”
IEEE Computer, vol. 29, no. 2, 1996.

[27] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in Proceedings of the 6th
Conference on Symposium on Opearting +++Systems Design
& Implementation - Volume 6, ser. OSDI’04. USENIX
Association, 2004.

http://www.cs.gsu.edu/~tcpp/curriculum/
http://www.cs.swarthmore.edu/~newhall/cs87
https://tcpp.cs.gsu.edu/curriculum/?q=node/21183
https://tcpp.cs.gsu.edu/curriculum/?q=node/21183
https://csinparallel.org
https://csinparallel.org
http://faculty.knox.edu/dbunde/parallel.html
http://faculty.knox.edu/dbunde/parallel.html
https://www.top500.org


[28] M. Zahran, “Heterogeneous computing: Here to stay: Hard-
ware and software perspectives,” ACM Queue, vol. 14, no. 6,
Dec. 2016.

[29] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” in Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, 2003.

[30] D. Abts and B. Felderman, “A guided tour through data-center
networking: A good user experience depends on predictable
performance within the data-center network.” ACM Queue,
vol. 10, no. 5, May 2012.

[31] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, Apr. 2010.

[32] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generals problem,” ACM Trans. Program. Lang. Syst., vol. 4,
no. 3, Jul. 1982.

[33] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao,
Y. Zhang, P. U. Jain, and M. Stumm, “Simple testing can
prevent most critical failures: An analysis of production fail-
ures in distributed data-intensive systems,” in 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 14), Oct. 2014.

[34] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A scal-
able peer-to-peer lookup protocol for internet applications,”
IEEE/ACM Trans. Netw., vol. 11, no. 1, Feb. 2003.

[35] W. K. Steinmetz R., “Chapter 2: What is this peer-to-peer
about?” https://link.springer.com/chapter/10.1007/11530657
2, 2005.

[36] B. W. Lampson, “Computer security in the real world,” IEEE
Computer, vol. 37, no. 06, jun 2004.

[37] E. H. Spafford, “The internet worm: Crisis and aftermath,”
Commun. ACM, vol. 32, no. 6, Jun. 1989.

[38] T. Mattson and M. Wrinn, “Parallel programming: Can we
please get it right this time?” in 2008 45th ACM/IEEE Design
Automation Conference, 2008, pp. 7–11.

[39] L. Lamport, Time, Clocks, and the Ordering of Events in a
Distributed System. Association for Computing Machinery,
2019.

[40] NVIDIA, “NVIDIA CUDA Compute Unified Device Archi-
tecture,” https://developer.nvidia.com/about-cuda, 2018.

[41] A. Danner, T. Newhall, and K. Webb, “A Library for Visu-
alizing and Debugging Parallel Applications,” in Proc. of 9th
NSF/TCPP Workshop on Parallel and Distributed Education
(EduPar-19), 2019.

[42] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G. D.
Peterson, R. Roskies, J. Scott, and N. Wilkins-Diehr, “Xsede:
Accelerating scientific discovery,” Computing in Science and
Engineering, vol. 16, no. 05, sep 2014.

[43] M. De Wael, S. Marr, B. De Fraine, T. Van Cutsem, and
W. De Meuter, “Partitioned global address space languages,”
ACM Comput. Surv., vol. 47, no. 4, 2015.

[44] C. Lin and L. Snyder, Principles of parallel Programming.
Addison-Wesley, 2008.

[45] Prasad, Gupta, Rosenberg, Sussman, and Weems, Topics in
Parallel and Distributed Computing: Enhancing the Under-
graduate Curriculum: Performance, Concurrency, and Pro-
gramming on Modern Platforms. Springer, 2018.

[46] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating
Systems: Three Easy Pieces, 1st ed. Arpaci-Dusseau Books,
August 2018.

[47] S. J. Matthews, T. Newhall, and K. C. Webb, “Dive into
Systems,” https://diveintosystems.org/, 2020.

[48] B. Barney, “Introduction to Parallel Computing,” https://
computing.llnl.gov/tutorials/parallel comp.

https://link.springer.com/chapter/10.1007/11530657_2
https://link.springer.com/chapter/10.1007/11530657_2
https://developer.nvidia.com/about-cuda
https://computing.llnl.gov/tutorials/parallel_comp
https://computing.llnl.gov/tutorials/parallel_comp

	Introduction
	Related Work
	Course Details
	Student Preparation
	Paper Reading and Discussion
	Reading Groups and Reaction Notes
	Selecting Papers and Paper Topics

	Lecture
	Lab Assignments
	Course Project

	Student Evaluation
	Remote Class Experience

	Instructor Evaluation
	Lessons Learned
	Conclusions
	References

