
Deadlock
12/1/16

Two	topics	today

• Deadlock:
• What	it	is.
• How	it	can	happen.
• How	to	deal	with	it.

• Assembly	support	for	atomicity:
• Test-and-set
• Compare-and-swap

What	is	Deadlock?
• Deadlock	is	a	problem	that	can	arise…
• when	processes	compete	for	access	to	limited	system	
resources.
• when	threads	are	incorrectly	synchronized.

• Definition:
• Deadlock	exists	among	a	set	of	threads	if	every	thread	is	
waiting	for	an	event	that	can	be	caused	only	by	another	
thread	in	the	set.

our	fault	(as	the	
programmer)

not	necessarily	
our	fault

Traffic	Jam	as	Example	of	Deadlock
• Cars	A,	B,	C,	D

• Road	W,	X,	Y,	Z

• Car	A	holds	road	space	Y,	
waiting	for	space	Z

• “Gridlock”

W X

Y Z

C

A

B

D

Cars	deadlocked
in	an	intersection

Traffic	Jam	as	Example	of	Deadlock

A

Z

B

D

W

C

Y X

Resource	Allocation
Graph

W X

Y Z

C

A

B

D

Cars	deadlocked
in	an	intersection

Four	Conditions	for	Deadlock

1. Mutual	Exclusion
• Only	one	thread	may	use	a	resource	at	a	time.

2. Hold-and-Wait
• Thread	holds	resource	while	waiting	for	another.

3. No	Preemption
• Can’t	take	a	resource	away	from	a	thread.

4. Circular	Wait
• The	waiting	threads	form	a	cycle.

Why	are	all	four	necessary?

For	each	condition,	assume	it	doesn’t	occur,	but	the	
other	3	do,	and	explain	why	deadlock	can’t	happen.

1. Mutual	Exclusion
2. Hold-and-Wait
3. No	Preemption
4. Circular	Wait

Examples	of	Deadlock

• Memory	(a	reusable	resource)
• total	memory	=	200KB
• T1 requests	80KB
• T2 requests	70KB
• T1 requests	60KB	(wait)
• T2 requests	80KB	(wait)

• Messages	(a	consumable	resource)
• T1:	receive	M2 from	P2
• T2:	receive	M1 from	P1

T1

T2

T1

M1

M2

T2

Banking,	Revisited
struct account {
mutex lock;
int balance;

}

Transfer(from_acct, to_acct, amt) {
lock(from_acct.lock);
lock(to_acct.lock)

from_acct.balance -= amt;
to_acct.balance += amt;

unlock(to_acct.lock);
unlock(from_acct.lock);

}

If	multiple	threads	are	executing	this	code,	
is	there	a	race?	Could	a	deadlock	occur?
struct account {
mutex lock;
int balance;

}

Transfer(from_acct, to_acct, amt) {
lock(from_acct.lock);
lock(to_acct.lock)

from_acct.balance -= amt;
to_acct.balance += amt;

unlock(to_acct.lock);
unlock(from_acct.lock);

}

Clicker	
Choice

Potential
Race?

Potential	
Deadlock?

A No No

B Yes No

C No Yes

D Yes Yes

If	there’s	potential	for	a	race/deadlock,	what	
execution	ordering	will	trigger	it?

Common	Deadlock

Thread	0
Transfer(acctA, acctB,
20);

Transfer(…) {

lock(acctA.lock);

lock(acctB.lock);

Thread	1
Transfer(acctB, acctA, 40);

Transfer(…) {

lock(acctB.lock);

lock(acctA.lock);

Common	Deadlock

Thread	0
Transfer(acctA, acctB,
20);

Transfer(…) {

lock(acctA.lock);

T0 gets to
here

lock(acctB.lock);

Thread	1
Transfer(acctA, acctB, 40);

Transfer(…) {

lock(acctB.lock);

T1 gets to
here

lock(acctA.lock);

T0 holds	A’s	lock,	will	make	no	progress	until	it	can	get	B’s.
T1 holds	B’s	lock,	will	make	no	progress	until	it	can	get	A’s.

How	to	Attack	the	Deadlock	Problem
• What	should	your	OS	do	to	help	you?

• Deadlock	Prevention
• Make	deadlock	impossible	by	removing	a	condition.

• Deadlock	Avoidance
• Avoid	getting	into	situations	that	lead	to	deadlock.

• Deadlock	Detection
• Don’t	try	to	stop	deadlocks.
• Rather,	if	they	happen,	detect	and	resolve.

Deadlock	Prevention
1. Mutual	exclusion
• Make	all	resources	sharable

2. Hold-and-wait
• Get	all	resources	simultaneously	(wait	until	all	free)
• Only	request	resources	when	it	has	none

3. No	preemption
• Allow	resources	to	be	taken	away	(at	any	time)

4. Circular	wait
• Order	all	the	resources,	force	ordered	acquisition

Which	of	these	conditions	is	easiest	
to	give	up	to	prevent	deadlocks?
A. Mutual	exclusion	(make	everything	sharable)

B. Hold	and	wait	(must	get	all	resources	at	once)

C. No	preemption	(resources	can	be	taken	away)

D. Circular	wait	(total	order	on	resource	requests)

E. I’m	not	willing	to	give	up	any	of	these!

Deadlock	Avoidance

• Only	allow	resource	acquisition	if	there	is	no	way	it	
could	lead	to	deadlock.

• This	is	necessarily	conservative,	so	there	will	be	
more	waiting.

• We	must	know	max	resource	usage	in	advance.
• How	could	we	know	this	and	track	it?
• Depends	on	the	resources	involved.

Detecting	a	Deadlock
• Construct	resource	graph

• Requires
• Identifying	all	resources
• Tracking	their	use
• Periodically	running	detection	
algorithm

A

Z

B

D

W

C

Y X

Recovery	from	Deadlock

1. Abort	all	deadlocked	threads	/	processes
• Will	remove	deadlock,	but	drastic	and	costly

2. Abort	deadlocked	threads	one-at-at-time
• Do	until	deadlock	goes	away	(need	to	detect)
• What	order	should	threads	be	aborted?

Recovery	from	Deadlock

3. Preempt	resources	(force	their	release)	
• Need	to	select	thread	and	resource	to	preempt
• Need	to	rollback	thread	to	previous	state
• Need	to	prevent	starvation

4. What	about	resources	in	inconsistent	states
• Such	as	files	that	are	partially	written?
• Or	interrupted	message	(e.g.,	file)	transfers?

Which	type	of	deadlock-handling	
scheme	would	you	expect	to	see	in	a	
modern	OS	(Linux/Windows/OS	X)	?

A. Deadlock	prevention

B. Deadlock	avoidance

C. Deadlock	detection/recovery

D. Something	else

“Ostrich	Algorithm”

A	mars	rover	deadlock

• Three	periodic	tasks:
1. Low	priority:	collect	meteorological	data
2. Medium	priority:	communicate	with	NASA
3. High	priority:	data	storage/movement

• Tasks	1	and	3	require	exclusive	access	to	a	
hardware	bus	to	move	data.
• Bus	protected	by	a	mutex.

Mars	Rover

• Failsafe	timer	(watchdog):	if	high	priority	task	
doesn’t	complete	in	time,	reboot	system

• Observation:	uh-oh,	this	thing	seems	to	be	
rebooting	a	lot,	we’re	losing	data…

JPL	engineers	later	confessed	that	one	or	two	system	resets	had	
occurred	in	their	months	of	pre-flight	testing.	They	had	never	
been	reproducible	or	explainable,	and	so	the	engineers,	in	a	
very	human-nature	response	of	denial,	decided	that	they	
probably	weren't	important,	using	the	rationale	"it	was	probably	
caused	by	a	hardware	glitch".

What	Happened:	Priority	
Inversion

Time

H

M

L Low	priority	task,	running	happily.

What	Happened:	Priority	
Inversion

Time

H

M

L

Low	priority	task	acquires	mutex lock.

What	Happened:	Priority	
Inversion

Time

H

M

L Blocked

Medium	task	starts	up,	takes	CPU.

What	Happened:	Priority	
Inversion

Time

H

M

L Blocked

High	priority	task	tries	to	acquire	
mutex,	can’t	because	it’s	already	held.

Blocked

What	Happened:	Priority	
Inversion

Time

H

M

L Blocked

High	priority	task	tries	to	acquire	
mutex,	can’t	because	it’s	already	held.

Low	priority	task	can’t	give	up	
the	lock	because	it	can’t	run	-
medium	task	trumps	it.

Blocked

What	Happened:	Priority	
Inversion

Time

H

M

L Blocked

Blocked

High	priority	is	
taking	too	long.

Reboot!

Solution:	Priority	Inheritance

Time

H

M

L ->	H Blocked

High	priority	task	tries	to	acquire	
mutex,	can’t	because	it’s	already	held.

Blocked

Give	to	blue	red’s	(higher)	priority!

Solution:	Priority	Inheritance

Time

H

M

Blocked

Blocked

Blocked

…

L

Release	lock,	revert	to	low	priority.

High	priority	finishes	in	time.

What’s	wrong	with	this	mutex?

lock:
cmp $0 %ebx #check mutex
jne lock #wait
mov $1 %ebx #lock mutex

...

mov $0 %ebx #unlock mutex

We	need	an	atomic	read-modify-
write	operation.

Two	that	are	commonly	implemented	in	hardware:

• Compare-and-swap
• Swap	two	memory	locations	only	if	the	first	has	a	
specific	value.	Return	success	or	failure.

• Test-and-set
• Set	a	memory	bit	to	1	and	return	its	old	value.

Mutex with	test-and-set

void Lock(int *lock) {

while (test_and_set(lock) == 1);

}

void Unlock(int *lock) {

*lock = 0);

}
What	assembly	would	
this	translate	to?

Exercise:	write	an	assembly	mutex
using	compare-and-swap.
CMPXCHG

Compares	the	value	in	the	AL,	AX,	or	EAX	register	
(depending	on	the	size	of	the	operand)	with	the	first	
operand	(destination	operand).	If	the	two	values	are	
equal,	the	second	operand	(source	operand)	is	loaded	
into	the	destination	operand.	Otherwise,	the	destination	
operand	is	loaded	into	the	AL,	AX,	or	EAX	register.

The	ZF	flag	is	set	if	the	values	in	the	destination	operand	
and	register	AL,	AX,	or	EAX	are	equal;	otherwise	it	is	
cleared.	The	CF,	PF,	AF,	SF,	and	OF	flags	are	set	according	
to	the	results	of	the	comparison	operation.

