
More	Types	of	
Synchronization

11/29/16

Today’s	Agenda

• Classic	thread	patterns
• Other	parallel	programming	patterns

• More	synchronization	primitives:
• RW	locks
• Condition	variables
• Semaphores

• Message	passing
• Exercise

Common	Thread	Patterns

• Thread	pool	(a.k.a.	work	queue)

• Producer	/	Consumer	(a.k.a.	Bounded	buffer)

• Thread	per	client	connection

Thread	Pool /	Work	Queue

• Common	way	of	structuring	threaded	apps:

Thread	Pool

Thread	Pool /	Work	Queue

• Common	way	of	structuring	threaded	apps:

Thread	Pool

Queue	of	work	to	be	done:

Thread	Pool /	Work	Queue

• Common	way	of	structuring	threaded	apps:

Thread	Pool

Queue	of	work	to	be	done: Farm	out	work	to	threads	
when	they’re	idle.

Thread	Pool /	Work	Queue

• Common	way	of	structuring	threaded	apps:

Thread	Pool

Queue	of	work	to	be	done:

As	threads	finish	work	at	their	own	
rate,	they	grab	the	next	item	in	queue.

Common	for	“embarrassingly	
parallel”	algorithms.

Works	across	the	network	too!

The	Producer/Consumer	Problem

• Producer	produces	data,	places	it	in	shared	buffer
• Consumer	consumes	data,	removes	from	buffer

Producer(s) Consumer(s)3 5 4 92

in

out
buf

All	kinds	of	real-world	examples:
print	queue:	printer	is	consumer
CPU	queue	of	ready	processes/threads	to	run	on	CPU

Thread	Per	Client

• Consider	a	web	server:
• Client	connects
• Client	asks	for	a	page:

• http://web.cs.swarthmore.edu/~bryce/cs31/f16
• Server	looks	through	file	system	to	find	path	(I/O)
• Server	sends	back	html	for	client	browser	(I/O)

• Web	server	does	this	for	MANY	clients	at	once

Thread	Per	Client
• Server	“main”	thread:
• Wait	for	new	connections
• Upon	receiving	one,	spawn	new	client	thread
• Continue	waiting	for	new	connections,	repeat…

• Client	threads:
• Read	client	request,	find	files	in	file	system
• Send	files	back	to	client
• Nice	property: Each	client	is	independent
• Nice	property: When	a	thread	does	I/O,	it	gets	blocked	for	
a	while.		OS	can	schedule	another	one.

Other	Noteworthy	Parallel	Patterns

• Single	instruction,	multiple	data	(SIMD)
• Apply	the	same	operation	independently	to	many	pieces	
of	data.

• Map-Reduce
• Apply	the	same	operation	independently	to	many	pieces	
of	data,	then	combine	the	results.

Single	instruction,	multiple	data

• Apply	the	same	operation	independently	to	many	
pieces	of	data.
• This	is	so	common	in	graphics	that	we	have	
specialized	hardware	for	it	(graphics	cards).
• Graphics	hardware	can	be	used	for	non-graphics	
SIMD	tasks.
• Known	as	GPGPU:	general	purpose	programming	on	
graphics	processing	units.
• Example:	matrix	multiplication	for	machine	learning.

Map-Reduce

• Map	step: perform	some	computation	on	each	
piece	of	data.
• Reduce	step: combine	the	results	of	the	mappers.

Assign	data	
to	mappers Assign	data	

to	reducers
output

Example:	find	the	
most-common	
words	in	a	book.

Synchronization	Mechanisms

• Mutex locks
• Guarantee	mutually	exclusive access.

• Barriers
• Wait	for	other	threads	to	catch	up.

• Read/write	locks
• Condition	variables
• Semaphores

Read/Write	locks
• Readers/Writers	Problem:
• An	object	is	shared	among	several	threads.
• Some	threads	only	read	the	object,	others	may	write	it.
• We	can	safely	allow	multiple	readers.
• But	writers	need	exclusive	access.

• pthread_rwlock_t:
• pthread_rwlock_init: initialize	rwlock
• pthread_rwlock_rdlock: lock	for	reading
• pthread_rwlock_wrlock: lock	for	writing

Condition	Variables
Wait	for	a	condition	to	be	true.

• In	the	pthreads library:
• pthread_cond_init: Initialize	CV
• pthread_cond_wait:	 Wait	on	CV
• pthread_cond_signal: Wakeup	one	waiter
• pthread_cond_broadcast: Wakeup	all	waiters

• Condition	variable	is	associated	with	a	mutex:
1. Lock	mutex,	realize	conditions	aren’t	ready	yet.
2. Temporarily	give	up	mutex until	CV	signaled.
3. Reacquire	mutex and	wake	up	when	ready.

Using	Condition	Variables

while (TRUE) {
//independent code

lock(m);
while (conditions bad)

wait(cond, m);

//proceed knowing that conditions are now good

signal (other_cond); // Let other thread know
unlock(m);

}

Semaphores:	generalized	mutexes

• Semaphore:	synchronization	variable
• Has	integer	value
• List	of	waiting	threads

• Works	like	a	gate
• If	sem >	0,	gate	is	open
• Value	equals	number	of	threads	that	can	enter

• Else,	gate	is	closed
• Possibly	with	waiting	threads

A	semaphore	with	initial	value	1	is	a	mutex

critical
section

sem	=	1
sem	=	2

sem	=	3

sem	=	0

Message	Passing

• Operating	system	mechanism	for	IPC
• send (destination, message_buffer)
• receive (source, message_buffer)

• Data	transfer:	in	to	and	out	of	kernel	message	buffers
• Synchronization:	can’t	receive	until	message	is	sent

send (to, buf) receive (from, buf)

kernel

P1 P2

Producer-Consumer	Problem
• A	shared	fix-sized	buffer
• Two	types	of	threads:

1. Producers:	create	an	item,	
add	it	to	buffer.

2. Consumers:	remove	an	
item	from	buffer,	and	
consume	it.

P0					P1				…					Cm

.	.	.

Buffer	of	size	N

Threads

Producer/Consumer	Synchronization?

Producer:	 Consumer:	

Circular	Queue	Buffer:	add	to	one	end	(in),	remove	from	other	(out)

int buf[N];
int in, out;
int num_items;

9 11 3 7buf:

Assume	Producers	&	Consumers	forever	produce	&	consume
Q:		Where	is	Synchronization	Needed	in	Producer	&	Consumer?

add/remove

out:	 in:											num_items:			1 5 4

Producer/Consumer	Synchronization?

Producer:	
• Needs	to	wait	if	there	is	no	
space	to	put	a	new	item	in	the	
buffer	(Scheduling)
• Needs	to	wait	to	have	
mutually	exclusive	access	to	
shared	state	associated	with	
the	buffer	(Atomic):
• Size	of	the	buffer	(num_items)
• Next	spot	to	insert	into	(in)

Consumer:
• Needs	to	wait	if	there	is	

nothing	in	the	buffer	to	
consume	(Scheduling)

• Needs	to	wait	to	have	
mutually	exclusive	access	to	
shared	state	associated	with	
the	buffer	(Atomic):
• Size	of	the	buffer	(num_items)
• Next	spot	to	remove	from	(out)

Exercise

Come	up		with	a	pseudo-code	solution	to	producer	and	
consumer.
• Assume	circular	buffer	add/remove	functions	provided
(don’t	check	overwrite	or	garbage	return	value)
• What	does	Producer	need	to	do	to	add	an	item?
• What	does	Consumer	need	to	do	to	remove	an	item?

Questions	to	Ask:
• Where	do	you	need	to	add	synchronization?

• What	sort	of	synchronization?
• Do	you	need	any	other	state	information?

