
Thread	Synchronization
11/17/16

Threading:	core	ideas

• Threads	allow	more	efficient	use	of	resources.
• Multiple	cores
• Down	time	while	waiting	for	I/O

• Threads	are	better	than	processes	for	parallelism.
• Cheaper	to	create	and	context	switch
• Easier	to	share	information

• Threading	makes	programming	harder.
• Need	to	think	about	how	to	split	a	problem	up
• Need	to	think	about	how	threads	interact

Create	and	Join
• Each	process	starts	with	a	single	thread.
• Any	thread	can	spawn	new	threads with	create.
• Starts	a	new	call	stack	for	the	thread.
• create specifies	what	function	the	thread	starts	with.

• Processes	always	start	with	main.
• Different	threads	can	start	with	different	functions.

• Returns	the	ID	of	the	new	thread.

• join causes	one	thread	to	block	until	another	
thread	completes.
• joinmust	specify	the	ID	of	the	thread	to	wait	for.
• join gives	access	to	the	thread	function’s	return	value.

Create	and	Join	example

main(){
double x = 1, y = -1;
tid t1, t2;
double res;
t1 = create(worker, x);
t2 = create(worker, y);
res = join(t1);
res += join(t2);
printf("%d\n",res);

}

IMPORTANT: this	is	not	
correct	C	code.	We	will	
talk	about	the	pthreads
library	next	week.

worker(double d){
do_work(&d);
return d;

}

Create	and	Join	illustrated

main	thread

peer	thread	1

printf()
exit()

terminates	
main	thread	and	
any	peer	threads

create()

join(t1) returns
(peer	threads
terminate)

create()
peer	thread	2

join(t2) returns
join(t2)

main	thread	waits	for	
thread	1	to	terminate

join(t1) do_work(&d)

return d;

do_work(&d)

return d;

Thread	Ordering
(Why	threads	require	care.		Reasoning	about	this	is	hard.)

• As	a	programmer	you	have	no	idea	when	threads	
will	run.		The	OS	schedules	them,	and	the	schedule	
will	vary	across	runs.

• It	might	decide	to	context	switch	from	one	thread	
to	another	at	any	time.

• Your	code	must	be	prepared	for	this!
• Ask	yourself:	“Would	something	bad	happen	if	we	
context	switched	here?”

Example:	The	Credit/Debit	Problem

• Say	you	have	$1000	in	your	bank	account
• You	deposit	$100
• You	also	withdraw	$100

• How	much	should	be	in	your	account?

• What	if	your	deposit	and	withdrawal	occur	at	the	
same	time,	at	different	ATMs?

Credit/Debit	Problem:	Race	Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs	first

Read	$1000	into	b

Credit/Debit	Problem:	Race	Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs	first

Read	$1000	into	b

Switch	to T1
Read	$1000	into	b
Debit	by	$100
Write	$900

Credit/Debit	Problem:	Race	Condition

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Say T0 runs	first

Read	$1000	into	b

Switch	to T1
Read	$1000	into	b
Debit	by	$100
Write	$900

Switch	back	to	T0
Read	$1000	into	b
Credit	$100
Write	$1100

Bank	gave	you	$100!

What	went	wrong?

Credit/Debit	Problem:	Race	Condition
Race	Condition:	outcome	
depends	on	scheduling	order	
of concurrent	threads.

“Critical	Section”

Thread T0

Credit (int a) {
int b;

b = ReadBalance ();
b = b + a;
WriteBalance (b);

PrintReceipt (b);
}

Thread T1

Debit (int a) {
int b;

b = ReadBalance ();
b = b - a;
WriteBalance (b);

PrintReceipt (b);
}

Bank	gave	you	$100!

What	went	wrong?

Badness	
if	context	
switch	
here!

To	Avoid	Race	Conditions

1. Identify	critical	sections

2. Use	synchronization	to	enforce	mutual	exclusion
• Only	one	thread	active	in	a	critical	section

Thread 0

- Critical -
- Section -

Thread 1

- Critical -
- Section -

What	Are	Critical	Sections?
• Sections	of	code	executed	by	multiple	threads
• Access	shared	variables,	often	making	local	copy
• Places	where	order	of	execution	or	thread	interleaving	will	
affect	the	outcome

• Must	run	atomically	with	respect	to	each	other
• Atomicity:	runs	as	an	entire	unit	or	not	at	all.		Cannot	be	
divided	into	smaller	parts.

Which	code	region	is	a	critical	
section?

thread_main ()
{ int a,b;

a = getShared();

b = 10;
a = a + b;
saveShared(a);

a += 1

return a;

}

Thread	A
thread_main()
{ int a,b;

a = getShared();

b = 20;
a = a - b;
saveShared(a);

a += 1

return a;

}

Thread	B

s = 40;

shared
memory

A
C

B

D E

Which	values	might	the	shared	s variable	
hold	after	both	threads	finish?

thread_main ()
{ int a,b;

a = getShared();

b = 10;
a = a + b;
saveShared(a);

return a;
}

Thread	A
thread_main ()
{ int a,b;

a = getShared();

b = 20;
a = a - b;
saveShared(a);

return a;
}

Thread	B

s = 40;

shared
memory

A. 30
B. 20	or	30
C. 20,	30,	or	50
D. Another	set	of	values

If	A	runs	first

main ()
{ int a,b;

a = getShared();

b = 10;
a = a + b;
saveShared(a);

return a;
}

main ()
{ int a,b;

a = getShared();

b = 20;
a = a - b;
saveShared(a);

return a;
}

s = 50;

shared
memory

Thread	A Thread	B

B	runs	after	A	Completes

main ()
{ int a,b;

a = getShared();

b = 10;
a = a + b;
saveShared(a);

return a;
}

main ()
{ int a,b;

a = getShared();

b = 20;
a = a - b;
saveShared(a);

return a;
}

s = 30;

shared
memory

Thread	A Thread	B

What	about	interleaving?

main ()
{ int a,b;

a = getShared();

b = 10;
a = a + b;
saveShared(a);

return a;
}

main ()
{ int a,b;

a = getShared();

b = 20;
a = a - b;
saveShared(a);

return a;
}

s = 40;

shared
memory

Thread	A Thread	B

Is	there	a	race	condition?
Suppose	count is	a	global	variable,	multiple	threads	increment	it:
count++;

A. Yes,	there’s	a	race	condition	(count++ is	a	critical	section).
B. No,	there’s	no	race	condition	(count++ is	not	a	critical	section).
C. Cannot	be	determined.

movl (%edx), %eax // read count value
addl $1, %eax // modify value
movl %eax, (%edx) // write count

How	about	if	compiler	implements	it	as:

incl (%edx) //
increment value

How	about	if	compiler	implements	it	as:

Mutex Locks

The	OS	provides	the	following	atomic	operations:
• Acquire/lock	a	mutex.
• If	no	other	thread	has	locked	the	mutex,	claim	it.
• If	another	thread	holds	the	mutex,	block.
• Threads	unblocked	in	FIFO	order.

• Release/unlock	a	mutex.

To	enforce	a	critical	section:
• Before	the	critical	section,	lock	the	mutex.
• After	the	critical	section	unlock	the	mutex.

Using	Locks

main ()
{ int a,b;

a = getShared();
b = 10;
a = a + b;

saveShared(a);

return a;

}

Thread	A
main ()
{ int a,b;

a = getShared();
b = 20;
a = a - b;

saveShared(a);

return a;

}

Thread	B

s = 40;

shared
memory

Using	Locks

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 10;
a = a + b;

saveShared(a);
release(l);

return a;

}

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 20;
a = a - b;

saveShared(a);
release(l);

return a;

}

s = 40;
Lock l;

shared
memory

Thread	A Thread	B

Held	by:	Nobody

Using	Locks

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 10;
a = a + b;

saveShared(a);
release(l);

return a;

}

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 20;
a = a - b;

saveShared(a);
release(l);

return a;

}

s = 40;
Lock l;

shared
memory

Thread	A Thread	B

Held	by:	Thread	A

Using	Locks

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 10;
a = a + b;

saveShared(a);
release(l);

return a;

}

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 20;
a = a - b;

saveShared(a);
release(l);

return a;

}

s = 40;
Lock l;

shared
memory

Thread	A Thread	B

Held	by:	Thread	A

Using	Locks

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 10;
a = a + b;

saveShared(a);
release(l);

return a;

}

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 20;
a = a - b;

saveShared(a);
release(l);

return a;

}

s = 40;
Lock l;

shared
memory

Thread	A Thread	B

Held	by:	Thread	A

Lock	already	owned.

Must	Wait!

Using	Locks

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 10;
a = a + b;

saveShared(a);
release(l);

return a;

}

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 20;
a = a - b;

saveShared(a);
release(l);

return a;

}

s = 50;
Lock l;

shared
memory

Thread	A Thread	B

Held	by:	Nobody

Using	Locks

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 10;
a = a + b;

saveShared(a);
release(l);

return a;

}

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 20;
a = a - b;

saveShared(a);
release(l);

return a;

}

s = 30;
Lock l;

shared
memory

Thread	A Thread	B

Held	by:	Thread	B

Using	Locks

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 10;
a = a + b;

saveShared(a);
release(l);

return a;

}

main ()
{ int a,b;

acquire(l);

a = getShared();
b = 20;
a = a - b;

saveShared(a);
release(l);

return a;

}

s = 30;
Lock l;

shared
memory

• No	matter	how	we	order	threads	or	when	we	context	switch,	
result	will	always	be	30,	like	we	expected	(and	probably	wanted).

Thread	A Thread	B

Held	by:	Nobody

Synchronizing	Threads
Sometimes	we	want	all	threads	to	catch	up	to	a	
specific	point	before	we	continue.
• Think	about	parallelizing	the	polygons	simulator.
• We	could	split	up	regions	of	the	world	across	threads.
• We	don’t	want	one	thread	to	start	round	2	before	
another	has	finished	round	1.

Solution:	barriers
• A	thread	that	calls	barrier_wait will	block	until	all	
other	threads	have	also	called	barrier_wait.

Barrier	Example,	N	Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

T1T0 T2 T3 T4

Barrier	(0	waiting)

Time

Barrier	Example,	N	Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

T1

T0 T2

T3

T4

Barrier	(0	waiting)

Threads	make	progress	computing	
current	round	at	different	rates.

Time

Barrier	Example,	N	Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

Barrier	(3	waiting)

Threads	that	make	it	to	barrier	must	
wait	for	all	others	to	get	there.

T1

T0 T2

T3

T4

Time

Barrier	Example,	N	Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

Barrier	(5	waiting)

Barrier	allows	threads	to	pass	when	
N	threads	reach	it.

T1T0 T2 T3 T4

Matches

Time

Barrier	Example,	N	Threads
shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
while (…) {
compute_sim_round()
barrier_wait(&b)

}
}

Barrier	(0	waiting)

Threads	compute	next	round,	wait	
on	barrier	again,	repeat…

T1
T0 T2 T3

T4

Time

Thread	operations

• create
• Starts	a	new	thread,	calling	a	specified	function.
• Returns	the	thread’s	ID.

• join
• Block	until	a	specified	thread	terminates.
• Gives	access	to	the	thread	function’s	return	value.

• mutex_lock
• Block	until	the	mutex is	available,	then	claim	it.

• mutex_unlock
• Release	a	mutex.

• barrier_wait
• Block	until	a	specified	number	of	threads	reach	the	barrier.

Devise	a	parallel	algorithm	for	max
Write	pseudocode	for	main	and	a	thread	function	
that	uses	(some	of)	create,	join,	mutex_lock,	
mutex_unlock,	and	barrier_wait.

• Array	size	M
• N	threads

• Version	1:	each	thread	returns	its	local	max
• Version	2:	each	thread	updates	a	global	max
• Version	3:	the	thread	that	found	the	max	prints

