
Threads
11/15/16

CS31	teaches	you…

• How	a	computer	runs	a	program.
• How	the	hardware	performs	computations
• How	the	compiler	translates	your	code
• How	the	operating	system	connects	hardware	and	
software

• The	implications	for	you	as	a	programmer
• Pipelining	instructions
• Caching
• Virtual	memory
• Process	switching
• Support	for	Parallel	programming	(threads)

Transistors	(*10^3)

Clock	Speed	(MHZ)

Power	(W)

ILP	(IPC)

Why	do	we	care	about	parallel?

Moore’s	Law

• Circuit	density	(number	of	transistors	in	a	fixed	
area)	doubles	roughly	every	two	years.

• This	used	to	mean	that	clock	speed	doubled	too.
• All	your	programs	run	twice	as	fast	for	free.
• Problem:	heat

• For	now,	circuit	density	is	still	increasing.	How	can	
we	make	use	of	it?

The	“Multi-Core	Era”

• We	can’t	make	a	single	core	go	much	faster.
• We	can	use	the	extra	transistors	to	put	multiple	
CPU	cores	on	the	chip.

• This	is	exciting:	CPUs	can	do	a	lot	more!
• Problem:	it’s	now	up	to	the	programmer	to	take	
advantage	of	multiple	cores.
• Humans	are	bad	at	thinking	in	parallel…

Parallel	Abstraction

• To	speed	up	a	job,	you	have	to	divide	it	across	
multiple	cores.

• A	process	contains	both	execution	information	and	
memory/resources.

• What	if	we	want	to	separate	the	execution	
information	to	give	us	parallelism	within	a	process?

Threads

• Modern	OSes separate	the	concepts	of	processes	
and	threads.
• The	process	defines	the	address	space	and	general	
process	attributes	(e.g.,	open	files).
• The	thread	defines	a	sequential	execution	stream	within	
a	process	(PC,	SP,	registers),

• A	thread	is	bound	to	a	single	process.
• Processes,	however,	can	have	multiple	threads.
• Each	process	has	at	least	one	thread.

Threads

Text

Data

Stack	1

Thread	1
PC1

SP1

Process	1

OS

Heap

This	is	the	picture	we’ve	been	
using	all	along:

A	process	with	a	single	thread,	
which	has	execution	state	
(registers)	and	a	stack.

Threads

Thread	1
PC1

SP1

Thread	2

PC2

SP2

Process	1

Text

Data

Stack	1

OS

Heap

Stack	2

We	can	add	a	thread	to	the	
process.		New	threads	share	all	
memory	(VAS)	with	other	
threads.

New	thread	gets	private	
registers,	local	stack.

Threads

Thread	1
PC1

SP1

Thread	2

Thread	3

PC2

SP2
PC3

SP3

Process	1

Text

Data

Stack	1

OS

Heap

Stack	2

Stack	3

A	third	thread	added.

Note:	they’re	all	executing	the	
same	program	(shared	
instructions	in	text),	though	
they	may	be	at	different	points	
in	the	code.

Threads
• Private:	tid,	copy	of	registers,	execution	stack
• Shared:	everything	else	in	the	process

11

tid0	tid1	…	tidm

.	.	.

per-thread	stacks

Process:+ Sharing	is	easy
+ Sharing	is	cheap	

no	data	copy	from	one	Pi’s	address	space
to	another	Pj’s address	space

+ Thread	create	faster	than	process
+ OS	can	schedule	on	multiple	CPUs

+ Parallelism
- Coordination/Synchronization

- How	to	not	muck-up	each	other’s	state
- Can’t	use	threads	in	distributed	systems

(when	cooperating	Pis are	on	different	computers)

Programming	Threads

12

.	.	.

Every	Process	has	1	thread	of	execution
• The	single	main	thread	executes	from	beginning

An	example	threaded	program’s	execution:
1. Main	thread	often	initializes	

shared	state	
2. Then	spawns multiple	threads
3. Set	of	threads	execute	concurrently

to	perform	some	task
4. Main	thread	may	do	a	join,		to	wait	for	

other	threads	to	exit	(like	wait	&	reaping	processes)
5. Main	thread	may	do	some	final	sequential	processing	(like	

write	results	to	a	file)	

Logical	View	of	Threads

13

• Threads	form	a	pool	of	peers	w/in	a	process
(Unlike	processes	which	form	a	tree	hierarchy)

pwd sh ls

ls

T1

Process	hierarchy
Threads	associated	with	a	process

T2
T0

T4 T3

shared	code,	data

bash

Thread	Concurrency

14

Single	Core	Processor
Simulate	by	time	slicing

Multi-Core	Processor
True	concurrency

Time

Thread	A Thread	B Thread	C Thread	A Thread	B Thread	C

Run	on	multiple	cores

Threads’		Execution	Control	Flows	Overlap

Concurrency?

• Several	computations	or	threads	of	control	are	
executing	simultaneously,	and	potentially	
interacting	with	each	other.

• We	can	multitask!		Why	does	that	help?
• Taking	advantage	of	multiple	CPUs	/	cores
• Overlapping	I/O	with	computation

Why	use	threads	over	processes?
Separating	threads	and	processes	makes	it	easier	to	
support	parallel	applications:

• Creating	multiple	paths	of	execution	does	not	require	
creating	new	processes	(less	state	to	store,	initialize).

• Low-overhead	sharing	between	threads	in	same	
process	(threads	share	page	tables,	access	same	
memory).

Threads	&	Sharing

• Code	(text)	shared	by	all	threads	in	process
• Global	variables	and	static	objects	are	shared
• Stored	in	the	static	data	segment,	accessible	by	any	
thread

• Dynamic	objects	and	other	heap	objects	are	shared
• Allocated	from	heap	with	malloc/free	or	new/delete

• Local	variables	can	BUT	SHOULD	NOT	be	shared	
• Refer	to	data	on	the	stack
• Each	thread	has	its	own	stack
• Never	pass/share/store	a	pointer	to	a	local	variable	on	
another	thread’s	stack

Threads	&	Sharing

• Local	variables	should	not	be	shared	
• Refer	to	data	on	the	stack
• Each	thread	has	its	own	stack
• Never	pass/share/store	a	pointer	to	a	local	variable	on	
another	thread’s	stack

…

function	C

function	D

…

function	A

function	B

Shared	Heap
int *x;

Z

Thread	1’s	stack Thread	2’s	stack

Thread	2	can	dereference	x	
to	access	Z.Function	B	returns…

Threads	&	Sharing

• Local	variables	should	not	be	shared	
• Refer	to	data	on	the	stack
• Each	thread	has	its	own	stack
• Never	pass/share/store	a	pointer	to	a	local	variable	on	
another	thread’s	stack

…

function	C

function	D

…

function	A

function	B

Shared	Heap
int *x;

Thread	1’s	stack Thread	2’s	stack

Thread	2	can	dereference	x	
to	access	Z.

Z

Shared	data	on	heap!

Thread-level	Parallelism
• Speed	up	application	by	assigning	portions	to	
CPUs/cores	that	process	in	parallel

• Requires:
• partitioning	responsibilities	(e.g.,	parallel	algorithm)
• managing	their	interaction

• Example:	processing	an	array

One	core: Four	cores:

If	one	CPU	core	can	run	a	program	at	a	
rate	of	X,	how	quickly	will	the	program	
run	on	two	cores?

A. Slower	than	one	core	(<X)
B. The	same	speed	(X)
C. Faster	than	one	core,	but	not	double	(X-2X)
D. Twice	as	fast	(2X)
E. More	than	twice	as	fast(>2X)

Parallel	Speedup

• Performance	benefit	of	parallel	threads	depends	on	
many	factors:
• algorithm	divisibility
• communication	overhead
• memory	hierarchy	and	locality
• implementation	quality

• For	most	programs,	more	threads	means	more	
communication,	diminishing	returns.

Example

23

static int x;

int foo(int *p) {
int y;

y = 3;
y = *p;
*p = 7;
x += y;

} Heap:

Stack:

0x0

Globals:				

Instructions:

max

Tid jTid i

If	threads	i and	j	both	execute
function	foo	code:
Q1:		which	variables	do	they	each

get	own	copy	of?		which
do	they	share?

Q2:	which	stmts can	affect	values
seen	by	the	other	thread?

Shared	Virtual	Address	Space:

foo:

Example

24

static int x;

int foo(int *p) {
int y;

y = 3;
y = *p;
*p = 7;
x += y;

}

Each	tid gets	its
own	copy	of	y
on	its	stack

x is	in	global	
memory	and	
is	shared	by	
every	thread

Heap:

Stack:

0x0

Globals:				

Instructions:

max

p is	parameter,	each	
tid gets	its	own	copy	
of	p.		However,	p
could	point	an	int
storage	location:	on	
the	stack,	or	in	global	
mem,		or	on	the	heap,	
or	even	in	another’s	
stack	frame

x:10

y:3

p:-

y:3

p:-

Tid jTid i

Summary
• Physical	limits	to	how	much	faster	we	can	make	a	
single	core	run.
• Use	transistors	to	provide	more	cores.
• Parallelize	applications	to	take	advantage.

• OS	abstraction:	thread
• Shares	most	of	the	address	space	with	other	threads	in	
same	process
• Gets	private	execution	context	(registers)	+	stack

• Coordinating	threads	is	challenging!

