
Paging
11/10/16



Recall	from	Tuesday

Our	solution	to	fragmentation	is	to	split	up	a	
process’s	address	space	into	smaller	chunks.

Process	1

OS

Process	2

Process	1

Process	3

Process	2

Physical	Memory

OS:
Place

Process	3

Process	3

Process	3

Process	3



Recall	from	Tuesday

We	support	virtual	addressing	
by	translating	addresses	at	
runtime.

We	can’t	achieve	this	using	
base	and	bound	registers	
unless	each	process’s	
memory	is	all	in	one	block. P2

0

N2-1

P2

P1

P3

0

N-1

Base +

<

Bound

y/n?



How	can	we	do	both?

• We	want	to	support	translation	of	virtual	addresses	
to	physical	addresses	on-the-fly.

• We	want	to	split	up	each	process’s	address	space	to	
use	physical	memory	more	efficiently.

The	solution	is	paging.



Paging	Vocabulary

• For	each	process,	the	virtual address	space	is	
divided	into	fixed-size	pages.

• For	the	system,	the	physical memory	is	divided	into	
fixed-size	frames.

• The	size	of	a	page	is	equal	to	that	of	a	frame.
• Often	4	KB	in	practice.



Main	Idea

• ANY	virtual	page	can	be	stored	in	any	available	frame.
• Makes	finding	an	appropriately-sized	memory	gap	very	
easy	– they’re	all	the	same	size.

• For	each	process,	OS	keeps	a	table	mapping	each	
virtual	page	to	physical	frame.



Main	Idea

• ANY	virtual	page	can	be	stored	in	any	available	frame.
• Makes	finding	an	appropriately-sized	memory	gap	very	
easy	– they’re	all	the	same	size.

Physical
Memory

Virtual
Memory

(OS	Mapping)
Implications	for	fragmentation?

External:	goes	away.		No	more	
awkwardly-sized,	unusable	gaps.

Internal:	About	the	same.		
Process	can	always	request	
memory	and	not	use	it.



Addressing

• Like	we	did	with	caching,	we’re	going	to	chop	up	
memory	addresses	into	partitions.

• Virtual	addresses:
• High-order	bits:	page	#
• Low-order	bits:	offset	within	the	page

• Physical	addresses:
• High-order	bits:	frame	#
• Low-order	bits:	offset	within	the	frame



Example:	32-bit	virtual	addresses

• Suppose	we	have	8-KB	(8192-byte)	pages.
• We	need	enough	bits	to	individually	address	each	byte	
in	the	page.
• How	many	bits	do	we	need	to	address	8192	items?



Example:	32-bit	virtual	addresses

• Suppose	we	have	8-KB	(8192-byte)	pages.
• We	need	enough	bits	to	individually	address	each	byte	
in	the	page.
• How	many	bits	do	we	need	to	address	8192	items?
• 213 =	8192,	so	we	need	13	bits.
• Lowest	13	bits:	offset	within	page.



Example:	32-bit	virtual	addresses

• Suppose	we	have	8-KB	(8192-byte)	pages.
• We	need	enough	bits	to	individually	address	each	byte	
in	the	page.
• How	many	bits	do	we	need	to	address	8192	items?
• 213 =	8192,	so	we	need	13	bits.
• Lowest	13	bits:	offset	within	page.

• Remaining	19	bits:	page	number.

We’ll	call	these	bits	p. We’ll	call	these	bits	i.



We’ll	call	these	bits	p. We’ll	call	these	bits	i.

OS	Page	Table
For	Process

Virtual	
address:

Physical	
address:

We’ll	(still)	call	these	bits	i.We’ll	call	these	bits	f.

Where	is	this	page	in	
physical	memory?
(In	which	frame?)

Once	we’ve	
found	the	frame,	
which	byte(s)	do	
we	want	to	
access?

Address	Partitioning



Physical	Address

Logical	Address
Page	p Offset	i

FrameV Perm …R D

Physical	Memory

Page	Table

Address	Translation



Page	Table
• One	table	per	process
• Table	entry	elements
• V:	valid	bit
• R:	referenced	bit
• D:	dirty	bit
• Frame:	location	in	phy mem
• Perm:	access	permissions

• Table	parameters	in	memory
• Page	table	base	register
• Page	table	size	register

FrameV Perm …PTBR
PTSR

R D



• Virtual	address	
=	p	+	i
• Physical	address	
=	f	+	i
• First,	do	a	series	
of	checks

Logical	Address
Page	p Offset	i

Physical	Address

FrameV Perm …R D

Address	Translation



Check	if	Page	p is	Within	Range
Logical	Address

Page	p

PTBR
PTSR

p <	PTSR

Offset	i

Physical	Address

FrameV Perm …R D



Check	if	Page	Table	Entry	p is	Valid
Logical	Address

Page	p

PTBR
PTSR

V	==	1

Offset	i

Physical	Address

FrameV Perm …R D



Check	if	Operation	is	Permitted
Logical	Address

Page	p

PTBR
PTSR

Perm	(op)

Offset	i

Physical	Address

FrameV Perm …R D



Translate	Address
Logical	Address

Page	p

PTBR
PTSR

Offset	i

Physical	Address

FrameV Perm …R D

concat



Physical	Address	by	
Concatenation

Logical	Address
Page	p

PTBR
PTSR

Offset	i

FrameV Perm …R D

Physical	Address
Frame	f Offset	i



Sizing	the	Page	Table
Logical	Address

Page	p Offset	i

Number	of	bits	n
specifies	max	size
of	table,	where
number	of	entries	
=	2n

Number	of	bits	needed	to	address
physical	memory	in	units	of	frames

Number	of	bits
specifies	page	size

FrameV Perm …R D



Example	of	Sizing	the	Page	Table

• 32	bit	virtual	addresses,	1	GB	physical	memory
• Address	partition:	20	bit	page	number,	12	bit	offset

Page	p:	20	bits Offset	i:	12	bits

…

FrameV Perm …R D



How	many	entries	(rows)	will	
there	be	in	this	page	table?
A. 212,	because	that’s	how	many	the	offset	field	can	

address
B. 220,	because	that’s	how	many	the	page	field	can	

address
C. 230,	because	that’s	how	many	we	need	to	address	1	

GB
D. 232,	because	that’s	the	size	of	the	entire	address	

space



Example	of	Sizing	the	Page	Table

How	big	is	a	
frame?

Page	p:	20	bits Offset	i:	12	bits

20	bits	to	address	220
=	1	M	entries

…

FrameV Perm …R D

• 32	bit	virtual	addresses,	1	GB	physical	memory
• Address	partition:	20	bit	page	number,	12	bit	offset



What	will	be	the	frame	size,	in	
bytes?
A. 212,	because	that’s	how	many	bytes	the	offset	

field	can	address
B. 220,	because	that’s	how	many	bytes	the	page	field	

can	address
C. 230,	because	that’s	how	many	bytes	we	need	to	

address	1	GB
D. 232,	because	that’s	the	size	of	the	entire	address	

space



Example	of	Sizing	the	Page	Table
Page	p:	20	bits Offset	i:	12	bits

20	bits	to	address	220
=	1	M	entries

Page	size	=
frame	size	=
212 =	4096	bytes

…

FrameV Perm …R D

• 32	bit	virtual	addresses,	1	GB	physical	memory
• Address	partition:	20	bit	page	number,	12	bit	offset



How	many	bits	do	we	need	to	store	the	
frame	number?

• 32	bit	virtual	addresses,	1	GB	physical	memory
• Address	partition:	20	bit	page	number,	12	bit	offset

A:	12 B:	18					C:	20					D:	30					E:	32

Page	p:	20	bits Offset	i:	12	bits

20	bits	to	address	220
=	1	M	entries

?

Page	size	=
frame	size	=
212 =	4096	bytes

…

FrameV Perm …R D



Example	of	Sizing	the	Page	Table

• 32	bit	virtual	addresses,	1	GB	physical	memory
• Address	partition:	20	bit	page	number,	12	bit	offset

Page	p:	20	bits Offset	i:	12	bits

20	bits	to	address	220
=	1	M	entries

18	bits	to	address	
230/212 frames

Page	size	=
frame	size	=
212 =	4096	bytes

…

Size	of	an	entry?

FrameV Perm …R D



How	big	is	an	entry,	in	bytes?
(Round	to	a	power	of	two	bytes.)

• 32	bit	virtual	addresses,	1	GB	physical	memory
• Address	partition:	20	bit	page	number,	12	bit	offset

A:	1					B:	2 C:	4 D:	8					E:16

Page	p:	20	bits Offset	i:	12	bits

20	bits	to	address	220
=	1	M	entries

18	bits	to	address	
230/212 frames

Page	size	=
frame	size	=
212 =	4096	bytes

…

Size	of	an	entry?

FrameV Perm …R D



Example	of	Sizing	the	Page	Table

• 32	bit	virtual	addresses,	1	GB	physical	memory
• Address	partition:	20	bit	page	number,	12	bit	offset

Page	p:	20	bits Offset	i:	12	bits

20	bits	to	address	220
=	1	M	entries

18	bits	to	address	
230/212 frames

Page	size	=
frame	size	=
212 =	4096	bytes

…

4	bytes	needed	to	contain
24	(1+1+1+18+3+…)	bits

FrameV Perm …R D

Total	table	size?



Example	of	Sizing	the	Page	Table

• 32	bit	virtual	addresses,	1	GB	physical	memory
• Address	partition:	20	bit	page	number,	12	bit	offset

Page	p:	20	bits Offset	i:	12	bits

20	bits	to	address	220
=	1	M	entries

18	bits	to	address	
230/212 frames

Page	size	=
frame	size	=
212 =	4096	bytes

…

4	bytes	needed	to	contain
24	(1+1+1+18+3+…)	bits Table	size	=

1	M	x	4	=	4	MB

FrameV Perm …R D



Concerns

• 4	MB	of	bookkeeping	for	every	process?
• 200	processes	->	800	MB	just	to	store	page	tables…

• We’re	going	to	need	a	ton	of	memory	just	for	page	
tables…

• We	need	to	do	a	lookup	in	our	page	table,	which	is	
in	memory,	every	time	a	process	accesses	memory.
• Isn’t	that	slowing	down	memory	by	a	factor	of	2?



Multi-Level	Page	Tables
(You’re	not	responsible	for	this.	Take	an	OS	class	for	the	details.)

Logical	Address
1st-level	Page	d Offset	i

FrameV …R D

2nd-level	Page	p

FrameV …R DPoints	to	(base)	frame	
containing	2nd-level	
page	table

concat

Physical	Address
Reduces	memory	usage	SIGNIFICANTLY:	
only	allocate	page	table	space	when	we	
need	it.		More	memory	accesses	though…



Caching	the	page	table

• Each	lookup	costs	another	memory	reference
• For	each	reference,	additional	references	required
• Slows	machine	down	by	factor	of	2	or	more	

• Take	advantage	of	locality
• Most	references	are	to	a	small	number	of	pages
• Keep	translations	of	these	in	high-speed	memory
(a	cache	for	page	translation)



VM	Implications

• Not	all	pieces	need	to	be	in	memory
• Need	only	piece	being	referenced
• Other	pieces	can	be	on	disk
• Bring	pieces	in	only	when	needed

• Illusion:	there	is	much	more	memory
• What’s	needed	to	support	this	idea?
• A	way	to	identify	whether	a	piece	is	in	memory
• A	way	to	bring	in	pieces	(from	where,	to	where?)
• Relocation	(which	we	have)



Sample	Contents	of	Page	Table	Entry

• Valid:	is	entry	valid	(page	in	physical	memory)?
• Ref:	has	this	page	been	referenced	yet?
• Dirty:	has	this	page	been	modified?
• Frame:	what	frame	is	this	page	in?
• Protection:	what	are	the	allowable	operations?
• read/write/execute

Frame	numberValid Ref Dirty Prot:	rwx



Page	faults

A	page	fault	occurs	when	we	try	to	access	a	virtual	
address	that	has	no	corresponding	physical	address.

mechanism	for	handling	a	page	fault:	
1. read	in	the	virtual	page	from	disk

• Location	kept	in	kernel	data	structure.
2. store	it	in	a	physical	memory	frame

• May	need	to	kick	something	else	out.
3. Update	PTE	with	frame	num &	valid	bit	=	1
4. Restart	instruction	that	caused	the	page	fault



Page	Faults	are	Expensive

• Disk:	5-6	orders	magnitude	slower	than	RAM
• Very	expensive;	but	if	very	rare,	tolerable

• Example
• RAM	access	time:	100	nsec
• Disk	access	time:	10	msec
• p =	page	fault	probability
• Effective	access	time:	100		+		p × 10,000,000	nsec
• If	p =	0.1%,	effective	access	time	=	10,100	nsec !



Handing	faults	from	disk	seems	very	
expensive.		How	can	we	get	away	with	
this	in	practice?

A. We	have	lots	of	memory,	and	it	isn’t	usually	full.

B. We	use	special	hardware	to	speed	things	up.

C. We	tend	to	use	the	same	pages	over	and	over.

D. This	is	too	common	&	expensive	to	do	in	practice!



Principle	of	Locality

• Not	all	pieces	referenced	uniformly	over	time
• Make	sure	most	referenced	pieces	in	memory
• If	not,	thrashing:	constant	fetching	of	pieces

• References	cluster	in	time/space
• Will	be	to	same	or	neighboring	areas
• Allows	prediction	based	on	past



Page	Replacement

• Goal:	remove	page(s)	not	exhibiting	locality

• Page	replacement	is	about
• which	page(s)	to	remove
• when	to	remove	them

• How	to	do	it	in	the	cheapest	way	possible
• Least	amount	of	additional	hardware
• Least	amount	of	software	overhead



Basic	Page	Replacement	Algorithms

• FIFO:	select	page	that	is	oldest
• Simple:	use	frame	ordering
• Doesn’t	perform	very	well	(oldest	may	be	popular)

• OPT:	select	page	to	be	used	furthest	in	future
• Optimal,	but	requires	future	knowledge
• Establishes	best	case,	good	for	comparisons

• LRU:	select	page	that	was	least	recently	used
• Predict	future	based	on	past;	works	given	locality
• Costly:	time-stamp	pages	each	access,	find	least

• Goal:	minimize	replacements	(maximize	locality)



Summary
• We	give	each	process	a	virtual	address	space	to	
simplify	process	execution.

• OS	maintains	mapping	of	virtual	address	to	physical	
memory	locations	in	a	page	table.
• One	page	table	for	every	process

• Provides	the	abstraction	of	very	large	memory:	not	all	
pages	need	be	resident	in	memory
• Bring	pages	in	from	disk	on	demand



Worksheet	example
Step	through	the	stream	of	Virtual	Addresses	from	the	
CPU:	

• Show	how	the	bits	of	each	address	are	used	for	each	Virtual	
Address	&	its	Physical	Address	mapping
• Translate	each	VA	to	its	PA	using	the	appropriate	PTE
• Update	PTEs	appropriately	as	you	go
• Show	the	history	of	the	contents	of	RAM	as	these	addresses	
are	accessed
• Which	virtual	page	of	which	process	does	it	store

• Implement	a	FIFO	page	replacement	policy	for	RAM

44


