
Virtual	Memory
11/8/16

(election	day)

Vote!

Recall:	the	job	of	the	OS

The	OS	is	an	interface	layer	between	a	user’s	
programs	and	hardware.

It	provides	an	abstract	view	of	the	hardware	that	
makes	it	easier	to	use.

Program
Operating	System

Computer	Hardware

What	we	Know	about	
Physical	Memory	(RAM)

OS0x0

max

RAM	is	array	of	addressable	bytes,	from	0x0	to	max
(ex)	address	0	to	230-1	for	1	GB	of	RAM	space

• The	OS	needs	to	be	in	RAM	
• Usually	loaded	at	address	0x0	

• Physical	Storage	for	running
processes:	Process	Address	
Spaces		are	stored	in	RAM

OS0x0

max

RAM

P1

P2

P3

x:

x:
P1	and	P2
each	get
their	own
copy	of	x

3

Regs

Main	memory
(RAM)

Secondary	storage

Cache

How	much	memory	is	allocated?

int main(){

int i;

printf("a stack address: %p\n", &i);

printf("a text address: %p\n", main);

printf("the difference: %d\n", (unsigned int)(&i) –

(unsigned int)(main));

}

a stack address: 0x7fff7f1e9774

a text address: 0x400596

the difference: 2128515550

>	2	gigabytes

The	virtual	memory	abstraction

Solves	two	problems:
• Not	enough	physical	memory	to	go	around.
• Don’t	want	multiple	programs	to	accidentally	
modify	the	same	physical	memory	location.

Key	ideas:
• OS	allocates	memory	to	processes	as	needed.
• Program’s	addresses	get	translated	to	physical	
addresses.

Memory
• Abstraction	goal:	make	every	
process	think	it	has	the	same	
memory	layout.
• MUCH	simpler	for	compiler	if	the	
stack	always	starts	at	0xFFFFFFFF,	
etc.

• Reality:	there’s	only	so	much	
memory	to	go	around,	and	no	two	
processes	should	use	the	same	
(physical)	memory	addresses.

Process	1

Process	3

Process	3

OS

Process	2

Process	1

OS	(with	help	from	hardware)	will	keep	track	
of	who’s	using	each	memory	region.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Memory	Terminology

Process	1

Process	3

Process	3

OS

Process	2

Process	1

Text

Data

Stack

OS

Heap

Physical	Memory:	The	contents	of	
the	hardware	(RAM)	memory.
Managed	by	OS.		Only	ONE of	these	
for	the	entire	machine!

Virtual	(logical)	Memory:	The	
abstract	view	of	memory	given	to	
processes.		Each	process	gets	an	
independent	view	of	the	memory.

Address	Space:
Range	of	addresses	for	
a	region	of	memory.

The	set	of	available	
storage	locations.

0x0

0x…
(Determined	by	amount	of		installed	RAM.)

0x0

0xFFFFFFFFVirtual	address	space	
(VAS):	fixed	size.

Text

Data

Stack

OS

Heap

Text

Data

Stack

OS

Heap

Memory	Terminology

Process	1

Process	3

Process	3

OS

Process	2

Process	1

Text

Data

Stack

OS

Heap
Address	Space:
Range	of	addresses	for	
a	region	of	memory.

The	set	of	available	
storage	locations.

0x0

0x…
(Determined	by	amount	of		installed	RAM.)

0x0

0xFFFFFFFFVirtual	address	space	
(VAS):	fixed	size.

Note:	It	is	common for	VAS	to	appear	larger	than	physical	memory.
32-bit	(IA32):	Can	address	up	to	4	GB,	might	have	less	installed
64-bit	(X86-64):	Our	lab	machines	have	48-bit	VAS	(256	TB),	36-bit	PAS	(64	GB)

Cohabitating	Physical	Memory

• If	process	is	given	CPU,	must	also	be	in	memory.
• Problem
• Context-switching	time	(CST):	10	µsec
• Loading	from	disk:	10	MB/s
• To	load	1	MB	process:	100	msec =	10,000	x CST
• Too	much	overhead!		Breaks	illusion	of	simultaneity

• Solution:	keep	multiple	processes	in	memory
• Context	switch	only	between	processes	in	memory

Memory	Issues	and	Topics

• Where	should	process	memories	be	placed?
• Topic:	“Classic”	memory	management

• How	does	the	compiler	model	memory?
• Topic:	Logical	memory	model

• How	to	deal	with	limited	physical	memory?
• Topics:	Virtual	memory,	paging

Plan:	Start	with	the	basics	(out	of	date)	to	motivate	why	we	
need	the	complex	machinery	of	virtual	memory	and	paging.

Problem:	Placement

• Where	should	process	memories	be	placed?
• Topic:	“Classic”	memory	management

• How	does	the	compiler	model	memory?
• Topic:	Logical	memory	model

• How	to	deal	with	limited	physical	memory?
• Topics:	Virtual	memory,	paging

Memory	Management
• Physical	memory	starts	as	one	big	empty	space.

Memory	Management
• Physical	memory	starts	as	one	big	empty	space.

• Processes	need	to	be	in	memory	to
execute.

Memory	Management
• Physical	memory	starts	as	one	big	empty	space.
• When	creating	process,	allocate	memory
• Find	space	that	can	contain	process
• Allocate	region	within	that	gap
• Typically,	leaves	a	(smaller)	free	space

Memory	Management
• Physical	memory	starts	as	one	big	empty	space.	
• When	creating	process,	allocate	memory
• Find	space	that	can	contain	process
• Allocate	region	within	that	gap
• Typically,	leaves	a	(smaller)	free	space

• When	process	exits,	free	its	memory
• Creates	a	gap	in	the	physical	address	space.
• If	next	to	another	gap,	coalesce.

Fragmentation

• Eventually,	memory	becomes	fragmented
• After	repeated	allocations/de-allocations

• Internal	fragmentation
• Unused	space	within	process
• Cannot	be	allocated	to	others
• Can	come	in	handy	for	growth

• External	fragmentation
• Unused	space	outside	any	process	(gaps)
• Can	be	allocated	(too	small/not	useful?)

Which	form	of	fragmentation	is	
easiest	for	the	OS	to	
reduce/eliminate?

A. Internal	fragmentation

B. External	fragmentation

C. Neither

Placing	Memory

• When	searching	for	space,	what	if	there	are	
multiple	options?
• Algorithms
• First	(or	next)	fit
• Best	fit
• Worst	fit

• Complication
• Is	region	fixed	or	variable	size?

Placing	Memory

• When	searching	for	space,	what	if	there	are	
multiple	options?
• Algorithms
• First	(or	next)	fit
• Best	fit
• Worst	fit

• Complication
• Is	region	fixed	or	variable	size?

Placing	Memory

• When	searching	for	space,	what	if	there	are	
multiple	options?
• Algorithms
• First	(or	next)	fit
• Best	fit
• Worst	fit

• Complication
• Is	region	fixed	or	variable	size?

Which	memory	allocation	algorithm	
leaves	the	smallest	fragments	(external)?

A. first-fit

B. worst-fit

C. best-fit

Is	leaving	small	fragments	a	
good	thing	or	a	bad	thing?

Placing	Memory

• When	searching	for	space,	what	if	there	are	
multiple	options?
• Algorithms
• First	(or	next)	fit:	fast
• Best	fit
• Worst	fit

• Complication
• Is	region	fixed	or	variable	size?

Placing	Memory

• When	searching	for	space,	what	if	there	are	
multiple	options?
• Algorithms
• First	(or	next)	fit
• Best	fit:	leaves	small	fragments
• Worst	fit

• Complication
• Is	region	fixed	or	variable	size?

Placing	Memory

• When	searching	for	space,	what	if	there	are	
multiple	options?
• Algorithms
• First	(or	next)	fit
• Best	fit
• Worst	fit:	leaves	large	fragments

• Complication
• Is	region	fixed	or	variable	size?

What	if	it	doesn’t	fit?

• There	may	still	be	significant	unused	space
• External	fragments
• Internal	fragments

• Approaches

What	if	it	doesn’t	fit?

• There	may	still	be	significant	unused	space
• External	fragments
• Internal	fragments

• Approaches
• Compaction

What	if	it	doesn’t	fit?

• There	may	still	be	significant	unused	space
• External	fragments
• Internal	fragments

• Approaches
• Compaction
• Break	process	memory	into	pieces

• Easier	to	fit.
• More	state	to	keep	track	of.

Problem	Summary:	Placement

• When	placing	process,	it	may	be	hard	to	find	a	large	
enough	free	region	in	physical	memory.

• Fragmentation	makes	this	harder	over	time	(free	
pieces	get	smaller,	spread	out).

• General	solution:	don’t	require	all	of	a	process’s	
memory	to	be	in	one	piece!

Problem	Summary:	Placement

• General	solution:	don’t	require	all	of	a	process’s	
memory	to	be	in	one	piece!

Process	1

OS

Process	2

Process	1

Process	3

Process	2

Physical	Memory

Problem	Summary:	Placement

• General	solution:	don’t	require	all	of	a	process’s	
memory	to	be	in	one	piece!

Process	1

OS

Process	2

Process	1

Process	3

Process	2

Physical	Memory

OS:
Place

Process	3

Problem	Summary:	Placement

• General	solution:	don’t	require	all	of	a	process’s	
memory	to	be	in	one	piece!

Process	1

OS

Process	2

Process	1

Process	3

Process	2

Physical	Memory

OS:
Place

Process	3

Process	3

Process	3

Problem	Summary:	Placement

• General	solution:	don’t	require	all	of	a	process’s	
memory	to	be	in	one	piece!

Process	1

OS

Process	2

Process	1

Process	3

Process	2

Physical	Memory

OS:
Place

Process	3

Process	3

Process	3Process	3

OS	may	choose	not	to	place	parts	
in	memory	at	all.

Problem:	Addressing

• Where	should	process	memories	be	placed?
• Topic:	“Classic”	memory	management

• How	does	the	compiler	model	memory?
• Topic:	Logical	memory	model

• How	to	deal	with	limited	physical	memory?
• Topics:	Virtual	memory,	paging

(More)	Problems	with	Memory	Cohabitation

• Addressing:
• Compiler	generates	memory	references
• Unknown	where	process	will	be	located

• Protection:
• Modifying	another	process’s	memory

• Space:
• The	more	processes	there	are,	the	less	memory	
each	individually	can	have

P2

P1

P3

Compiler’s	View	of	Memory

• Compiler	generates	memory	addresses
• Needs	empty	region	for	text,	data,	heap,	stack
• Ideally,	very	large	to	allow	heap	and	stack	to	grow
• Alternative:	four	independent	empty	regions

• What	compiler	needs	to	know,	but	doesn’t
• Physical	memory	size
• Where	to	place	data	(e.g.,	stack	at	high	end)

• Must	avoid	allocated	regions	in	memory

Address	Spaces
• Address	space
• Set	of	addresses	for	memory

• Usually	linear:	0	to	N-1	(size	N)
• Physical	Address	Space
• 0	to	N-1,	N =	size
• Kernel	occupies	lowest	addresses

0

N-1

PAS

kernel

PM

Virtual	vs.	Physical	Addressing
• Virtual	addresses
• Assumes	separate	memory	
starting	at	0
• Compiler	generated
• Independent	of	location	in	
physical	memory

• OS:	Map	virtual	to	physical

P1
0

N1-1

P2

0

N2-1

P3

0

N3-1

VM’sVAS’s

P2

P1

P3

0

N-1

PMPAS

When	should	we	perform	the	mapping	
from	virtual	to	physical	address?	Why?

A. When	the	process	is	initially	loaded:	convert	all	
the	addresses	to	physical	addresses

B. When	the	process	is	running:	map	the	addresses	
as	they’re	used.

C. Perform	the	mapping	at	some	other	time.	When?

Hardware	for	Virtual	Addressing
• Base	register	filled	with	start	
address
• To	translate	address,	add	
base
• Achieves	relocation
• To	move	process:	change	
base

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

Hardware	for	Virtual	Addressing
• Base	register	filled	with	start	
address
• To	translate	address,	add	
base
• Achieves	relocation
• To	move	process:	change	
base

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

Hardware	for	Virtual	Addressing
• Base	register	filled	with	start	
address
• To	translate	address,	add	
base
• Achieves	relocation
• To	move	process:	change	
base
• Protection? P2

0

N2-1

P2

P1

P3

0

N-1

Base +

Protection
• Bound	register	works	with	
base	register
• Is	address	<	bound
• Yes:	add	to	base
• No:	invalid	address,	TRAP

• Achieves	protection

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

<

Bound

y/n?

When	would	we	need	to	update	
these	base	&	bound	registers?

Given	what	we	currently	know	about	
memory,	what	must	we	do	during	a	
context	switch?

• A.	Allocate	memory	to	the	switching	process

• B.	Load	the	base	and	bound	registers

• C.	Convert	logical	to	physical	memory	addresses

Memory	Registers	Part	of	Context

• On	Every	Context	Switch
• Load	base/bound	registers	for	selected	process
• Only	kernel	does	loading	of	these	registers
• Kernel	must	be	protected	from	all	processes

• Benefit
• Allows	each	process	to	be	separately	located
• Protects	each	process	from	all	others

Problem	Summary:	Addressing

• Compiler	has	no	idea	where,	in	physical	memory,	
the	process’s	data	will	be.

• Compiler	generates	instructions	to	access	VAS.

• General	solution:	OS	must	translate	process’s	VAS	
accesses	to	the	corresponding	physical	memory	
location.

Problem	Summary:	Addressing
• General	solution:	OS	must	translate	process’s	VAS	
accesses	to	the	corresponding	physical	memory	
location.

Process	1

OS

Process	2

Process	1

Process	3

Process	2

Physical	Memory

OS:
Translate

Process	3

Process	3

Process	3
Process	3

When	the	process	tries	to	access	a	
virtual	address,	the	OS	translates	it	to	
the	corresponding	physical	address.

movl (address	0x74),	%eax

Problem	Summary:	Addressing
• General	solution:	OS	must	translate	process’s	VAS	
accesses	to	the	corresponding	physical	memory	
location.

Process	1

OS

Process	2

Process	1

Process	2

Physical	Memory

Process	3

Process	3

0x42F80

Process	3
OS:

Translate

Process	3

Process	3

When	the	process	tries	to	access	a	
virtual	address,	the	OS	translates	it	to	
the	corresponding	physical	address.

movl (address	0x74),	%eax

Let’s	combine	these	ideas:

1. Allow	process	memory	to	be	divided	up	into	
multiple	pieces.

2. Keep	state	in	OS	(+	hardware/registers)	to	map	
from	virtual	addresses	to	physical	addresses.

Result:	Keep	a	table to	store	the	mapping	of	each	
region.

Problem	Summary:	Addressing
• General	solution:	OS	must	translate	process’s	VAS	
accesses	to	the	corresponding	physical	memory	
location.

Process	1

OS

Process	2

Process	1

Process	2

Physical	Memory

Process	3

Process	3

0x42F80

Process	3
OS:

Translate

Process	3

Process	3

When	the	process	tries	to	access	a	
virtual	address,	the	OS	translates	it	to	
the	corresponding	physical	address.

movl (address	0x74),	%eax
OS	must	keep	a	table,	for	each	
process,	to	map	VAS	to	PAS.
One	entry	per	divided	region.

Two	(Real)	Approaches
• Segmented	address	space/memory
• Partition	address	space	and	memory	into	
segments
• Segments	are	generally	different	sizes

• Paged	address	space/memory
• Partition	address	space	and	memory	into	
pages
• All	pages	are	the	same	size

