
Processes
11/3/16

Recall:	the	kernel’s	job

Ensure	that	all	running	processes	have	reasonable	
access	to	system	resources:

• CPU
• Memory
• IO	devices

Provide	a	lone	view abstraction:	each	process	should	
run	as	if	it	were	the	only	one	on	the	system.

Managing	CPU	cycles:	timesharing

• Multiple	processes	per	CPU
• Each	process	makes	progress	over	time
• Illusion	of	parallel	progress	by	rapidly	switching	CPU
• When	scheduled,	a	process	runs	for	a	few	milliseconds	
(1ms	=	10-3 seconds) before	getting	preempted.

P1 P2

P3

P1 P2 P3
quantum

P1
P2
P3

time

• State	transitions
• Dispatch:	allocate	the	CPU	to	a	process
• Preempt:	take	away	CPU	from	process
• Sleep:	process	gives	up	CPU	to	wait	for	event
• Wakeup:	event	occurred,	make	process	ready

Process	State
new	process

Exit

wake	up

sleep

Ready Blocked

ExitedRunning

(on	CPU)

dispatch preempt

Why	might	a	process	be	blocked	
(unable	to	make	progress	/	use	CPU)?

A. It’s	waiting	for	another	process	to	do	something.

B. It’s	waiting	for	memory	to	find	and	return	a	value.

C. It’s	waiting	for	an	I/O	device	to	do	something.

D. More	than	one	of	the	above.	(Which	ones?)

E. Some	other	reason(s).

How	is	Timesharing	Implemented?

• Kernel	tracks	the	state	of	each	process:
• Running:	actually	making	progress,	using	CPU
• Ready:	able	to	make	progress,	but	not	using	CPU
• Blocked:	not	able	to	make	progress,	can’t	use	CPU

• A	process	runs	until	stopped:
• Can	stop	itself	by	making	a	system	call	(TRAP)
• Can	be	stopped	by	the	kernel	(interrupt)

• Kernel	runs	to	perform	a	context	switch:
• Save	the	state	of	the	current	process
• Selects	another	ready	process	and	load	its	state

Kernel	Maintains	Process	Table

• List	of	processes	and	their	states
• Also	sometimes	called	“process	control	block	(PCB)”

• Other	state	info	includes
• CPU	context	(register	values)
• areas	of	memory	being	used
• other	information

Process ID	(PID) State Other	info
1534 Ready Saved	context,	…

34 Running Memory	areas	used,	…

487 Ready Saved context,	…

9 Blocked Condition	to	unblock,	…

How	a	Context	Switch	Occurs

• Process	makes	system	call	(TRAP)	or	is	interrupted
• These	are	the	only	ways	of	entering	the	kernel

• In	hardware
• Switch	from	user	to	kernel	mode:	amplifies	power
• Go	to	fixed	kernel	location:	interrupt/trap	handler

• In	software	(in	the	kernel	code)
• Save	context	of	last-running	process
• Select	new	process	from	those	that	are	ready
• Restore	context	of	selected	process
• OS	returns	control	to	a	process	from	interrupt/trap

Why	should	the	kernel	(not	each	
process)	control	context	switching?

A. It	would	cause	too	much	overhead.

B. They	could	refuse	to	give	up	the	CPU.

C. They	don’t	have	enough	information	about	other	
processes.

D. Some	other	reason(s).

Policy	question:	how	should	the	
kernel	pick	the	next	process	to	run?

There	are	lots	of	reasonable	options:
• Keep	running	the	same	process	when	possible.
• maximize	throughput

• Run	the	process	that	has	been	ready	longest.
• ensure	fairness

• Prioritize	some	processes.
• Should	user(s)	set	the	priorities?
• Should	priority	be	determined	automatically?

Linux’s	Policy
(You’re	not	responsible	for	this.)

• Special	“real	time”	process	classes	(high	priority)

• Other	processes:
• Keep	red-black	BST	of	process,	organized	by	how	much	
CPU	time	they’ve	received.
• Pick	the	ready	with	process	that	has	run	for	the	shortest	
time	thus	far.
• Run	it,	update	it’s	CPU	usage	time,	add	to	tree.

• Interactive	processes:	Usually	blocked,	low	total	
run	time,	high	priority.

Where	do	processes	come	from?

The	fork() system	call	creates	a	new	process.

On	boot,	the	kernel	spawns	the	“init”	process.

Init calls	fork() to	create	child	processes.

Those	processes	can	also	create	children	with	fork.

fork()

• System	call	(function	provided	by	OS	kernel).

• Creates	a	duplicate	of	the	requesting	process.
• Process	is	cloning	itself:

• CPU	context
• Memory	“address	space”

OS

Stack

Text
Data
Heap

OS

Stack

Text
Data
Heap

OS

Stack

Text
Data
Heap

(Almost)	identical	clones

fork() return	value
• The	two	processes	are	identical	in	every	way,	
except	for	the	return	value	of	fork().
• The	child	gets	a	return	value	of	0.
• The	parent	gets	a	return	value	of	child’s	PID.

pid_t pid = fork(); // both continue after call
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Which	process	executes	next?		Child?	Parent?	Some	other	process?

Up	to	OS	to	decide.		No	guarantees.		Don’t	rely	on	particular	behavior!

How	many	hello’s	will	be	printed?

fork();

printf(“hello”);

if (fork()) {

printf(“hello”);

}

fork();

printf(“hello”);

A.6
B.8
C.12
D.16
E.18

After	fork(),	call	exec()

• Family	of	functions	(execl,	execlp,	execv,	…).

• Replace	the	current	process	with	a	new	one.

• Loads	program	from	disk:
• Old	process	is	overwritten	in	memory.
• Does	not	return	unless	error.

Common	fork()usage:	Shell

• A	“shell”	is	the	program	controlling	your	terminal	
(e.g.,	bash).

• It	calls	fork() to	create	new	processes,	but	we	
don’t	want	a	clone	(another	shell).

• We	want	the	child	to	execute	some	other	program:	
call	exec().

Common	fork()usage:	Shell

1. fork()child	process.

2. exec()desired	program	to	replace	child’s	
address	space.

2. wait()for	child	process	to	terminate.

3. repeat…

The	parent	and	child	each	do	
something	different	next.

Common	fork()usage:	Shell

1. fork()child	process.

Shell

fork()

Shell
(p)

Shell
(c)

Common	fork()usage:	Shell

2. parent:	wait()for	child	to	finish

Shell

fork()

Shell
(p)

Shell
(c)

wait()

Common	fork()usage:	Shell

2. child:	exec()user-requested	program

Shell

fork()

Shell
(p)

Shell
(c)

wait() exec()

Common	fork()usage:	Shell

2. child:	exec()user-requested	program

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs	to	completion

Common	fork()usage:	Shell

3. child	program	terminates,	cycle	repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs	to	completion

Child	terminates

Common	fork()usage:	Shell

3. child	program	terminates,	cycle	repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs	to	completion

Child	terminatesShell
(p)

Parent	process	
(shell)	resumes

Process	Termination

A	process	terminates	when:
• main returns
• It	calls	exit()
• It	receives	a	termination	signal	(from	the	OS	or	
another	process)

• In	all	cases,	it	process	produces	status	information.
• The	parent	process	receives	this	information.

What	Happens	when	a	
process	exits?
It	becomes	a	zombie	process	until	
its	parent	reaps	it.

Zombie	process:	
• exited,	mostly	dead,	not	
runnable	anymore	
• waiting	for	parent	to	
completely	remove	all	of	its	
state	from	the	system

26

The	parent	process	is	responsible	for	cleaning	up	child	
process	state.	Two	options:

1. Parent	explicitly	waits	for	child	to	exit	by	calling	a	
wait	function:
• wait:	wait	for	any	child	to	exit	(pid returned).
• waitpid:	wait	for	a	specific	child	to	exit.

2. Parent	receives	a	SIGCHILD	signal,	and	the	signal	
handler	code	calls	wait to	reap	the	child.

27

Reaping	zombies

Summary:	system	calls	for	processes
• fork:	spawns	new	process.
• Called	once,	Returns	twice	(in	parent	and	child	
process).

• exit:	terminates	own	process.
• Called	once,	never	returns.
• Puts	it	into	“zombie”	status.

• wait or	waitpid:	reap	terminated	children.
• exec family:	runs	new	program	in	existing	
process.
• Called	once,	(normally)	never	returns.

28

Signals
Signal:	a	software	interrupt:	a	small	message	to	tell

a	process	that	some	event	has	happened.
• OS	sends a	signal	to	a	process

• On	behalf	of	another	process	that	called	the	kill syscall
• As	the	result	of	some	event (NULL	pointer	dereference)

• A	process	receives a	signal
Asynchronous:	signalee doesn’t	know	when	it	will	get	one
A	signal	is	pending before	a	process	receives	it

• A	signal	interrupts the	receiving	process,	
which	then	runs	signal	handler	code
• default	handlers	for	each	signal	type	in	OS
• programmer	can	also	add	signal	handler	code

29

Signals
OS	identifies	specific	signal	by	its	number,	examples:

30

ID Name Default	Action Corresponding	Event
2 SIGINT Terminate Interrupt	(e.g.,	ctl-c	from	keyboard)
9 SIGKILL Terminate Kill	program	(cannot	override	or	ignore)

11 SIGSEGV Terminate	 Invalid	memory	reference	(e.g.	NULL	ptr)
14 SIGALRM Terminate Timer	signal
17 SIGCHLD Ignore Child	stopped	or	terminated

Sending	Signals:
Unix	command:
$ kill -9 1234 #	send	SIGKILL signal	to	process	1234
System	call:
kill(1234, SIGKILL); //	send	SIGKILL to	process	1234

Implicitly	sent: side-effect	of	program	doing	something	
(NULL	ptr dereference	causes	SIGSEGV)

Receiving	a	Signal
• A	destination	process	receives a	signal	when	it	is	
forced	by	the	kernel	to	react	in	some	way	to	the	
delivery	of	the	signal.

• Three	possible	ways	to	react:
• Ignore the	signal	(do	nothing)
not	all	signals	can	be	ignored	(e.g.	SIGKILL)
• Terminate the	process	on	receipt	of	signal
• Catch the	signal	by	executing	a	user-level	function	
called	signal	handler

31

Installing	Signal	Handlers
signal(int signum, handler_t *handler);

• Modifies	the	default	action	associated	with	the	receipt	of	
a	particular	signal.

• handler is	a	signal	handler	function
• When	program	receives	signal,	it	jumps	to	start	
executing	the	handler function.
• When	the	handler done	executing,	control	passes	
back	to	instruction	in	the	control	flow	of	the	process	
that	was	interrupted	by	receipt	of	the	signal.

32

Summary

• Processes	are	cycled	off	and	on	CPU	rapidly.
• Mechanism:	context	switch
• Policy:	CPU	scheduling

• Processes	are	created	by	fork().

• Other	functions	to	manage	processes:
• exec():	replace	address	space	with	new	program
• exit():	terminate	process
• wait():	reap	child	process,	get	status	info

• Signals	communicate	events	to	processes.

