
Arrays,	Structs,
and	Memory

10/18/16

Recall:	Indexed	Addressing	Mode

• General	form:
offset(%base, %index, scale)

• Translation:	Access	the	memory	at	address…
base + (index * scale) + offset

• Example:
-0x8(%ebp, %ecx, 0x4)

Translate	this	array	access	to	IA32

int *x;
x = malloc(10*sizeof(int));

...

x[i] = -12;

At	this	point,	suppose	that	the	
variable	x is	stored	at	%ebp+8.	
And	i is	in	%edx.	Use	indexed	
addressing	to	assign	into	the	array.

Two-dimensional	Arrays

int twodims[3][4];

twodims[1][3] = 5;

• Technically	an	array	of	arrays	of	ints.

• “Give	me	three	sets	of	four	integers.”

• How	are	these	organized	in	memory?

Two-dimensional	Arrays
int twodims[3][4];

for(i=0; i<3; i++) {

for(j=0; j<4; j++) {

twodims[i][j] = i+j;

}

}
0 1 2 3

1 2 3 4

2 3 4 5

twodims[0]

twodims[1]

twodims[2]

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

Two-dimensional	Arrays:	Matrix
int twodims[3][4];

for(i=0; i<3; i++) {

for(j=0; j<4; j++) {

twodims[i][j] = i+j;

}

}
0 1 2 3twodims[0]

1 2 3 4twodims[1]

2 3 4 5twodims[2]

Memory	Layout

int twodims[3][4];

• Matrix:	3	rows,	4	columns
0 1 2 3
1 2 3 4
2 3 4 5

twodims[1][3]:

base	addr +	row	offset	+	col	offset

twodims + 1*ROWSIZE*4 + 3*4

0xf260 + 16 + 12 = 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Memory	Layout

int twodims[3][4];

• Matrix:	3	rows,	4	columns
0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Row	Major	Order:
all	Row	0	buckets,
followed	by
all	Row	1	buckets

0 1 2 3
1 2 3 4
2 3 4 5

If	we	declared	int matrix[5][3];,	
and	the	base	of	matrix	is	0x3420,	what	is	
the	address	of	matrix[3][2]?

A. 0x3438
B. 0x3440
C. 0x3444
D. 0x344C
E. None	of	these

2D	Arrays	Another	Way
char *arr[3]; // array of 3 char *’s

for(i=0; i<3; i++) {

arr[i] = malloc(sizeof(char)*5);

for(j=0; j<5; j++) {

arr[i][j] = i+j;

}

}

10

arr[0]

arr[1]

arr[2]

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

stack

Heap:	each	malloc’ed array	of	5	chars
is	contiguous,	but	three	separately
malloc’ed arrays,	not	necessarily
à each	has	separate	base	address

11

char *arr;

arr = malloc(sizeof(char)*ROWS*COLS);

for(i=0; i< ROWS; i++) {

for(j=0; j< COLS; j++) {

arr[i*COLS+j] = i+j;

}

}

arr 0 1 2 3 4
1 2 3 4 5

2 3 4 5 6

stack

Heap:	all	ROW*COLS	buckets	are	contiguous
(allocated	by	a	single	malloc)
all	buckets	can	be	access	from	single
base	address	(addr)

2D	Arrays	Yet	Another	Way

Structs
• Laid	out	contiguously	by	field

• In	order	of	field	declaration.
• May	require	some	padding,	for	alignment.

• Struct fields	accessible	as	a	base	+	displacement
• Compiler	knows	(constant)	displacement	of	each	field

struct student{
int age;
float gpa;
int id;

};

struct student s;

…			 Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Data	Alignment:
• Where	(which	address)	can	a	field	be	located?

• char	(1	byte):	can	be	allocated	at	any	address:
0x1230,	0x1231,	0x1232,	0x1233,	0x1234,	…

• short	(2	bytes):	must	be	aligned	on	2-byte	addresses:
0x1230,	0x1232,	0x1234,	0x1236,	0x1238,	…

• int (4	bytes):	must	be	aligned	on	4-byte	addresses:
0x1230,	0x1234,	0x1238,	0x123c,	0x1240,	…

Why	do	we	want	to	align	data	on	
multiples	of	the	data	size?
A. It	makes	the	hardware	faster.

B. It	makes	the	hardware	simpler.

C. It	makes	more	efficient	use	of	memory	space.

D. It	makes	implementing	the	OS	easier.

E. Some	other	reason.

Data	Alignment:	Why?
• Simplify	hardware
• e.g.,	only	read	ints from	multiples	of	4
• Don’t	need	to	build	wiring	to	access	4-byte	chunks	at	any	

arbitrary	location	in	hardware

• Inefficient	to	load/store	single	value	across	alignment	
boundary	(1	vs.	2	loads)

• Simplify	OS:
• Prevents	data	from	spanning	virtual	pages
• Atomicity	issues	with	load/store	across	boundary

Structs
• Laid	out	contiguously	by	field

• In	order	of	field	declaration.
• May	require	some	padding,	for	alignment.

• Struct fields	accessible	as	a	base	+	displacement
• Compiler	knows	(constant)	displacement	of	each	field

struct student{
int age;
float gpa;
int id;

};

struct student s;

…			 Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

How	much	space	do	we	need	to	
store	one	of	these	structures?

struct student{
char name[11];
short age;
int id;

};

A.17	bytes
B.18	bytes
C.20	bytes
D.22	bytes
E.24	bytes

Structs

struct student{
char name[11];
short age;
int id;

};

• Size	of	data:	17	bytes
• Size	of	struct:	20	bytes

Memory …			

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f

0x1240 s.age

0x1231

0x1232

0x1233

0x1234 s.ssn

0x1235

0x1236

0x1237

0x1238 …

padding

padding

Use	sizeof()	when	allocating	
structs with	malloc()!

Alternative	Layout

struct student{
int id;
short age;
char name[11];

};

Same	fields,	declared	in	
a	different	order.

Alternative	Layout

struct student{
int id;
short age;
char name[11];

};

• Size	of	data:	17	bytes
• Size	of	struct:	17	bytes!

Memory …			

0x1234 s.ssn

0x1235

0x1236

0x1237

0x1238 s.age

0x1239

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In	general,	this	isn’t	a	big	deal	on	a	
day-to-day	basis.		Don’t	go	out	and	
rearrange	all	your	struct declarations.

Cool,	so	we	can	get	rid	of	this	
padding	by	being	smart	about	
declarations?
• Answer:	Maybe.

• Rearranging	helps,	but	often	padding	after	the	
struct can’t	be	eliminated.
struct T1 { struct T2 {

char c1; int x;
char c2; char c1;
int x; char c2;

}; };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x

“External”	Padding
• Array	of	Structs

Field	values	in	each	bucket	must	be	properly	aligned:
struct T2 arr[3];

Buckets	must	be	on	a	4-byte	aligned	address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x	+	8 x	+	12

Which	instructions	would	you	use	to	
access	the	age	field	of	students[8]?

struct student {

int id;

short age;

char name[11];

};

struct student students[20];

students[8].age = 21;

Assume	the	base	of	students	
is	stored	in	register	%edx.

Stack	Padding

• Memory	alignment	applies	elsewhere	too.

void func1(){ void func2(){

int x; vs. double y;

char ch[5]; int x;

short s; short s;

double y; char ch[5];

... ...

} }

What	We’ve	Learned
CS31:	First	Half

The	Hardware	Level

• Basic	Hardware	Units:
• Processor
• Memory
• I/O	devices

• Connected	by	buses.

memory

CPU I/O	devices

bus

Foundational	Concepts
• Von	Neumann	architecture
• Programs	are	data.
• Programs	and	other	data	are	stored	in	main	memory.

• Binary	data	representation
• Data	is	encoded	in	binary.
• Two’s	complement
• ASCII
• etc.

• Instructions	are	encoded	in	binary.
• Opcode
• Source	and	destination	addresses

Architecture	and	Digital	Circuits
• Circuits	are	built	from	logic	gates.
• Basic	gates:	AND,	OR,	NOT,	…

• Three	types	of	circuits:
• Arithmetic/Logic
• Storage
• Control

• The	CPU	uses	all	three	types	of	circuits.
• Clock	cycle	drives	the	system.
• One	instruction	per	clock	cycle.

• ISA	defines	which	operations	are	available.

ALU

Registers

Control

Assembly	Language
• Assembly	instructions	correspond	closely	to	CPU	
operations.
• Compiler	converts	C	code	to	assembly	instructions.
• Types	of	instructions:
• Arithmetic/logic:	ADD,	OR,	…
• Control	Flow:		JMP,	CALL
• Data	Movement:	MOV,			(and	fake	data	mvmt:	LEAL)
• Stack	&	Functions:	PUSH,	POP,	CALL,	LEAVE,	RET

• Many	ways	to	compile	the	same	program.
• Conventions	govern	choices	that	need	to	be	consistent.

• Location	of	function	arguments,	return	address,	etc.

C	Programming	Concepts

• Arrays,	structs,	and	memory	layout.

• Pointers	and	addresses.

• Function	calls	and	stack	memory.

• Dynamic	memory	on	the	heap.

Some	of	the	(many)	things	we’ve	
left	out...

• EE	level:	wires	and	transistors.
• Optimizing	circuits:	time	and	area.
• Example:	a	ripple	carry	adder	has	a	long	critical	path;	
can	we	shorten	it?

• Architecture	support	for	complex	instructions.
• Often	an	assembly	instruction	requires	multiple	CPU	
operations.

• Compiler	design.
• The	compiler	automates	C	àIA32	translation.	How	does	
this	work?	How	can	it	be	made	efficient?

Midterm	Info

• Arrive	early	on	Thursday.	We	will	start	right	at	1:15.
• Bring	a	pencil.
• Please	don’t	use	a	pen.

• Closed	notes,	but	you	may	bring	the	following:
• IA32	cheat	sheet
• IA32	stack	diagram

• Q&A-style	review	session	in	lab	tomorrow.
• I	will	not	prepare	slides	for	this.
• You	need	to	prepare	questions	to	make	this	useful.

Midterm	Tips

• Don’t	leave	questions	blank:	a	partial	answer	is	
better	than	none.
• If	you	don’t	understand	a	question,	ask	for	
clarification	during	exam.
• If	you’re	not	sure	how	to	do	problem,	move	on	and	
come	back	later.
• Use	a	question’s	point	value	as	rough	guide	for	how	
much	time	to	spend	on	it.
• Review	your	answers	before	turning	in	the	exam.
• Show	your	work	for	partial	credit.

