Arrays, Structs,
and Memory

10/18/16

Recall: Indexed Addressing Mode

* General form:

offset (, , scale)

* Translation: Access the memory at address...
+ * scale) + offset

* Example:

-0x8 (5ebp, %ecx, 0x4)

Translate this array access to [A32

int *x;
= malloc (10*sizeof (int)) ;

At this point, suppose that the
_10;e— variable x is stored at $ebp+8.
And i isin $edx. Use indexed

addressing to assign into the array.

Two-dimensional Arrays

int twodims[3][4];
twodims[1] [3] = 5;

* Technically an array of arrays of ints.
* “Give me three sets of four integers.”

* How are these organized in memory?

Two-dimensional Arrays

int twodims|[3][4];

for (1=0; 1<3; 1i++) {

for (§J=0; J<4; j++)

twodims [i][§] =

twodims|[0]

twodims|[1]

twodims|[2]

{

i+7;

[0]{0] [O][1] [o](2] [O](3]
—> 0 1 2 3

[11{o] [1][1] [1](2] [1](3]

—> 1 2 3 4

[2]{0] [2][1] [2](2] [2][3]

—> 2 3 4 5

Two-dimensional Arrays

int twodims|[3][4];
for (1=0; 1<3; 1i++) {
for (3=0; j<4; J++) |

twodims (1] [3] = 1i+7;
}
}
twodims[0]| —> 0
twodims[1]| ———> 1
twodims[2]| ——— 2

- Matrix
1 2
2 3

Memory Layout

int twodims|[3][4];
 Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodims[1] [3]:
base addr + row offset + col offset
twodims + 1*ROWSIZE*4 + 3*4

Oxf260 + 16 + 12 = 0Oxf27c

0x£260
Oxf264
O0xf268
Oxf26cC
O0x£270
Oxf274
O0x£f278
Oxf27c
0x£280
O0xf284
0x£288
Oxf28c

Ol flwIiNdDIDd>WINDIRFRWIDND]ER] O

twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim

twodim

[0][0]
[0][1]
[0][2]
[0][3]
[1][0]
[1][1]
[1][2]
[1][3]
(2] [0]
[2][1]
[2][2]
[2][3]

twodim

Memory Layout

int twodims[3][4];
 Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

Row Major Order:
all Row O buckets,
followed by

all Row 1 buckets

0x£260
Oxf264
O0xf268
Oxf26cC
O0x£270
Oxf274
O0x£f278
Oxf27c
0x£280
O0xf284
0x£288
Oxf28c

Ol flwIiNdDIDd>WINDIRFRWIDND]ER] O

twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim
twodim

twodim

[0][0]
[0][1]
[0][2]
[0][3]
[1][0]
[1][1]
[1][2]
[1][3]
(2] [0]
[2][1]
[2][2]
[2][3]

twodim

If we declared int matrix[5] [3];,
and the base of matrixis 0x3420, what is
the addressofmatrix[3][2]7

. 0x3438
. 0x3440
. 0x3444
. 0x344C
. None of these

2D Arrays Another Way

char *arr[3];

for (1i=0; 1<3; 1i++) {

// array of 3 char *’'s

arr[i] = malloc(sizeof (char) *5);

for (J=0; 3<5; J++)

arr[i][]] = 1+73;
11T] Heap: each malloc’ed array of 5 chars
J is contiguous, but three separately
} malloc’ed arrays, not necessarily
— each has separate base address
0 1 2 3 4
stack
arr[0]
1 2 3 4 5
arr[1]
arr[2]
2 3 4 5 6

10

2D Arrays Yet Another Way

char *arr;
arr = malloc(sizeof (char) *ROWS*COLS) ;
for (i=0; i< ROWS; i++) {
for (3=0; j< COLS; J++) {
arr [1*COLS+]j] = 1i+7;

Heap: all ROW*COLS buckets are contiguous
(allocated by a single malloc)

all buckets can be access from single
base address (addr)

stack 1 2 3 4 5
arr o o | 1 | 2 1 3 | 4 |
2 3 4 5 6

Structs

 Laid out contiguously by field
* In order of field declaration.

* May require some padding, for alignment.

e Struct fields accessible as a base + displacement
* Compiler knows (constant) displacement of each field

struct student/{
int age;
float gpa;
int 1id;

s

struct student s;

O0x1234

0x1238

Ox123c

Memory

s.age

sS.gpa

Data Alignment:

 Where (which address) can a field be located?

 char (1 byte): can be allocated at any address:
0x1230, 0x1231, 0x1232, 0x1233, 0x1234, ...

 short (2 bytes): must be aligned on 2-byte addresses:
0x1230, 0x1232, 0x1234, 0x1236, 0x1238, ...

* int (4 bytes): must be aligned on 4-byte addresses:
0x1230, 0x1234, 0x1238, 0x123c, 0x1240, ...

Why do we want to aligh data on
multiples of the data size?

A. It makes the hardware faster.

. It makes the hardware simpler.

. It makes more efficient use of memory space.

. It makes implementing the OS easier.

. Some other reason.

Data Alignment: Why?

* Simplify hardware
 e.g., onlyread ints from multiples of 4

* Don’t need to build wiring to access 4-byte chunks at any
arbitrary location in hardware

* |nefficient to load/store single value across alignment
boundary (1 vs. 2 loads)

 Simplify OS:
* Prevents data from spanning virtual pages
e Atomicity issues with load/store across boundary

Structs

 Laid out contiguously by field
* In order of field declaration.

* May require some padding, for alignment.

e Struct fields accessible as a base + displacement
* Compiler knows (constant) displacement of each field

struct student/{
int age;
float gpa;
int 1id;

s

struct student s;

O0x1234

0x1238

Ox123c

Memory

s.age

sS.gpa

How much space do we need to
store one of these structures?

struct student{
char name[1l1l];
short age;
int 1d;

b

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

Structs

struct student{
char name[1l1l];
short age;
int 1d;

by

e Size of data: 17 bytes
e Size of struct: 20 bytes

Use sizeof() when allocating

structs with malloc()!

Memory

0x1234
0x1235

Ox123d
O0x123e
O0x123f
0x1240
0x1231
0x1232
0x1233
0x1234
0x1235
0x1236
0x1237

0x1238 | ..

s.name[0]

s.name[1]

s.name[9]
s.name[10]
padding

s.age

padding

S.S38nN

Alternative Layout

struct student{

int 1d; Same fields, declared in

short age; a different order.

char name[1l1l];

by

Alternative Layout

struct student{
int 1d;
short age;
char name[1l1l];

by

e Size of data: 17 bytes
* Size of struct: 17 bytes!

In general, this isn’t a big deal on a
day-to-day basis. Don’t go out and
rearrange all your struct declarations.

Memory

0x1234
0x1235
0x1236
0x1237
0x1238
0x1239
0x1240
0x1231
0x1232

O0x1234
0x1235

O0x12306 | ..

. S8

.age

.name [0]
.name [1]

.name [2]

.name[9]

.name[10]

T1:

Cool, so we can get rid of this
padding by being smart about
declarations?

* Answer: Maybe.

* Rearranging helps, but often padding after the
struct can’t be eliminated.

struct T1 { struct T2 {
char cl; int x;
char c2; ' char cl;
int x; char c2;

cl|c2 X T2: X cl|c2

“External” Padding

* Array of Structs

Field values in each bucket must be properly aligned:
struct T2 arr[3];

arr: X cl|c2 X cl|c2 X cl]c2

1 I I

X+38 x+12

Buckets must be on a 4-byte aligned address

Which instructions would you use to
access the age field of students|8]?

struct student { Assume the base of students
int id; is stored in register %edx.

short age;

char name[1l1l];

by
struct student students[20];

students[8] .age = 21;

Stack Padding

* Memory alignment applies elsewhere too.

void funcl () { volid func2 () {
int x; VS. double vy;
char ch[b]; int x;
short s; short s;

double vy; char ch[5];

What We've Learned

CS31: First Half

The Hardware Level

CPU I/O devices

memory

bus

e Basic Hardware Units:
* Processor

* Memory ey
* |/O devices

* Connected by buses.

Foundational Concepts

* Von Neumann architecture
* Programs are data.
* Programs and other data are stored in main memory.

* Binary data representation

e Data is encoded in binary.
* Two’s complement
e ASCII
* etc.

* Instructions are encoded in binary.
* Opcode
* Source and destination addresses

Architecture and Digital Circuits

* Circuits are built from logic gates.

Registers

* Basic gates: AND, OR, NOT, ... e

* Three types of circuits:
* Arithmetic/Logic ,
Control
* Storage & Y
* Control

ALU

* The CPU uses all three types of circuits.

* Clock cycle drives the system.
* One instruction per clock cycle.

* |SA defines which operations are available.

Assembly Language

* Assembly instructions correspond closely to CPU
operations.

* Compiler converts C code to assembly instructions.

e Types of instructions:
* Arithmetic/logic: ADD, OR, ...
e Control Flow: JMP, CALL
 Data Movement: MOV, (and fake data mvmt: LEAL)
e Stack & Functions: PUSH, POP, CALL, LEAVE, RET

* Many ways to compile the same program.

* Conventions govern choices that need to be consistent.
* Location of function arguments, return address, etc.

C Programming Concepts

* Arrays, structs, and memory layout.
* Pointers and addresses.

* Function calls and stack memory.

* Dynamic memory on the heap.

Some of the (many) things we’ve
left out...

* EE |level: wires and transistors.

* Optimizing circuits: time and area.
 Example: a ripple carry adder has a long critical path;
can we shorten it?
* Architecture support for complex instructions.
e Often an assembly instruction requires multiple CPU
operations.
* Compiler design.

* The compiler automates C 21A32 translation. How does
this work? How can it be made efficient?

Midterm Info

* Arrive early on Thursday. We will start right at 1:15.

* Bring a pencil.
* Please don’t use a pen.

* Closed notes, but you may bring the following:
* IA32 cheat sheet
* |A32 stack diagram

* Q&A-style review session in lab tomorrow.
* | will not prepare slides for this.
* You need to prepare questions to make this useful.

Midterm Tips

* Don’t leave questions blank: a partial answer is
better than none.

* If you don’t understand a question, ask for
clarification during exam.

* If you’re not sure how to do problem, move on and
come back later.

* Use a question’s point value as rough guide for how
much time to spend on it.

* Review your answers before turning in the exam.
* Show your work for partial credit.

