
The	Stack	and	Memory	
in	IA32

10/6/16

Tuesday,	we	covered	these	IA32	
convenience	instructions…
• pushl src

subl $4, %esp
movl src, (%esp)

• popl dst
movl (%esp), dst
addl $4, %esp

• leave
%esp = %ebp
popl %ebp

Next	up:	call and	ret

• Call	jumps	to	the	start	of	the	callee’s instructions.
• indicated	by	a	label

• Ret	jumps	back	to	the	next	instruction	of	the	caller.

Why	don’t	we	just	do	this	with	jmp?

Function	calls

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Text	Memory	Region

Function	calls

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Set	up	function	B’s	stack.

Text	Memory	Region

Function	calls

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Set	up	function	B’s	stack.

Execute	the	body	of	B,	produce	
result	(stored	in	%eax).

Text	Memory	Region

Function	calls

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Set	up	function	B’s	stack.

Execute	the	body	of	B,	produce	
result	(stored	in	%eax).

Restore	function	A’s	stack.

Text	Memory	Region

Function	calls

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Return:
Go	back	to	what	we	were	doing	
before	funcB started.

Unlike	jumping,	we	intend	to	go	back!

Text	Memory	Region

We	need	to	get	%eip back.

• call should	save	%eip then	jump	to	callee.

• ret should	restore	%eip to	jump	back	to	the	
caller.

We	could	accomplish	this	without	call and	ret.	
They’re	just	convenience	instructions	(like	push,	
pop,	and	leave).

Write	write	call and	ret using	
other	IA32	instructions.

• call f:	save	%eip then	jump	to	the	start	of	f.
push %eip
jmp f

• ret:	restore	%eip to	jump	back	to	the	caller.
popl %eip

IA32	Stack	/	Function	Call	
Instructions

pushl Create	space	on	the	stack	and	place	
the	source	there.

subl $4, %esp
movl src, (%esp)

popl Remove	the	top	item	off	the	stack	and	
store	it	at	the	destination.

movl (%esp), dst
addl $4, %esp

call 1.	Push	return	address	on	stack	
2.	Jump	to	start	of	function

push %eip
jmp target

leave Prepare	the	stack	for	return
(restoring	caller’s	stack	frame)

movl %ebp, %esp
popl %ebp

ret
Return	to	the	caller,	PC	ß saved	PC
(pop	return	address	off	the	stack	into	
PC	(eip))

popl %eip

On	the	stack	between	the	caller’s	
and	the	callee’s stack	frames…

• Caller’s	base	pointer	(to	reset	the	stack).

• Caller’s	instruction	pointer	(to	continue	execution).

• Function	parameters.

What	order	should	we	store	all	of	
these	things	on	the	stack?	Why?

callee parameters

return	address
caller’s	base	pointer

callee parameters

caller’s	base	pointer

return	address

return	address
caller’s	base	pointer

callee parameters

callee parameters

caller’s	base	pointer
return	address

A B

C D

E:	some	other	order.

Putting	it	all	together…

…
Older	stack	frames.

…

Caller’s	local	variables.

Final	Argument	to	Callee
…

First	Argument	to	Callee
Return	Address

Callee’s local	variables.

Caller’s	Frame	Pointer

Caller’s	
frame.

Callee’s
frame.

Shared	by	caller	
and	callee.

Translate	this	to	IA32.
What	should	be	on	the	stack?

int add_them(int a, int b, int c) {

return a+b+c;

}

int main() {

add_them(1, 2, 3);
}

Assume	the	stack	initially	looks	like:

main

0xFFFFFFFF

%esp

%ebp

Stack	Frame	Contents

• Local	variables
• Previous	stack	frame	base	address
• Function	arguments
• Return	value
• Return	address

• Saved	registers
• Spilled	temporaries main

0xFFFFFFFF

function	1

function	2

Saving	Registers

• Registers	are	a	scarce	resource,	but	they’re	fast	to	
access.	Memory	is	plentiful,	but	slower	to	access.

• Should	the	caller	save	its	registers	to	free	them	up	for	
the	callee to	use?
• Should	the	callee save	the	registers	in	case	the	caller	
was	using	them?
• Who	needs	more	registers	for	temporary	calculations,	
the	caller	or	callee?

• Clearly	the	answers	depend	on	what	the	functions	do…

Splitting	the	difference…

• We	can’t	know	the	answers	to	those	questions	in	
advance…

• We	have	six	general-purpose	registers,	let’s	divide	
them	into	two	groups:
• Caller-saved:	%eax,	%ecx,	%edx
• Callee-saved:	%ebx,	%esi,	%edi

Register	Convention

• Caller-saved:	%eax,	%ecx,	%edx
• If	the	caller	wants	to	preserve	these	registers,	it	must	
save	them	prior	to	calling	callee.
• The	callee is	free	to	trash	these;	the	caller	will	restore	if	
needed.

• Callee-saved:	%ebx,	%esi,	%edi
• If	the	callee wants	to	use	these	registers,	it	must	save	
them	first,	and	restore	them	before	returning.
• The	caller	can	assume	these	will	be	preserved.

This	is	why	lab	4	had	the	
comment	about	using	only	
%eax,	%ecx,	and	%edx.

Running	Out	of	Registers

• Some	computations	require	more	than	six	registers	
to	store	temporary	values.

• Register	spilling:	The	compiler	will	move	some	
temporary	values	to	memory,	if	necessary.
• Values	pushed	onto	stack,	popped	off	later
• No	explicit	variable	declared	by	user

IA32	addressing	modes

• Direct	addressing	(what	we’ve	seen	so	far)
-4(%ebp)

• Indexed	addressing
(%ecx, %edx, 4)

offset base	
address

base	
address

index scale

Indexed	Addressing	Mode

• General	form:
offset(%base, %index, scale)

• Translation:	Access	the	memory	at	address…
base + (index * scale) + offset

Discussion:	when	would	this	mode	be	useful?

Suppose	i is	at	%ebp-8,	and	equals	2.

User	says:
float_arr[i] = 9;

Translates	to:
movl -8(%ebp), %edx

Heap

0x0824: iptr[0]

0x0828:												iptr[1]

0x082C:												iptr[2]

0x0830:												iptr[3]

Example
%ecx 0x0824

%edx 2
Registers:

ECX:	Array	base	address

Suppose	i is	at	%ebp-8,	and	equals	2.

User	says:
float_arr[i] = 9;

Translates	to:
movl -8(%ebp), %edx

Heap

0x0824: iptr[0]

0x0828:												iptr[1]

0x082C:												iptr[2]

0x0830:												iptr[3]

Example
%ecx 0x0824

%edx 2
Registers:

ECX:	Array	base	address

Suppose	i is	at	%ebp-8,	and	equals	2.

User	says:
float_arr[i] = 9;

Translates	to:
movl -8(%ebp), %edx

movl $9, (%ecx, %edx, 4)

Heap

0x0824: iptr[0]

0x0828:												iptr[1]

0x082C:												iptr[2]

0x0830:												iptr[3]

Example
%ecx 0x0824

%edx 2
Registers:

ECX:	Array	base	address

Suppose	i is	at	%ebp-8,	and	equals	2.

User	says:
float_arr[i] = 9;

Translates	to:
movl -8(%ebp), %edx

movl $9, (%ecx, %edx, 4)

0x0824 + (2 * 4) + 0

0x0824 + 8 = 0x082C

Heap

0x0824: iptr[0]

0x0828:												iptr[1]

0x082C:												iptr[2]

0x0830:												iptr[3]

Example
%ecx 0x0824

%edx 2
Registers:

ECX:	Array	base	address

What	is	the	final	state	after	this	code?

addl $4, %eax

movl (%eax), %eax

sall $1, %eax

movl %edx, (%ecx, %eax, 2)

%eax 0x2464

%ecx 0x246C

%edx 7

(Initial	state)
Registers:

Memory:
Heap

0x2464: 5

0x2468: 1

0x246C:												42

0x2470:												3

0x2474:												9

Translate	this	array	access	to	IA32

int *x;
x = malloc(10*sizeof(int));

...

x[i] = -12;

At	this	point,	suppose	that	the	
variable	x is	stored	at	%ebp+8.	
And	i is	in	%edx.	Use	indexed	
addressing	to	assign	into	the	array.

The	leal instruction

• Uses	the	circuitry	that	computes	addresses.
• Doesn’t	actually	access	memory.
• Compute	an	“address”	and	store	it	in	a	register.
• Can	use	the	full	version	of	indexed	addressing.

leal offset(%base, %index, scale), dest

leal 5(%eax, %esi, 2), %edx

#put %eax + 5 + (2*%esi) in %edx

