
Functions	and	the	Stack
10/4/16

Overview

• Stack	data	structure,	applied	to	memory

• Behavior	of	function	calls

• Storage	of	function	data,	at	IA32	level

“A”	Stack
• A	stack	is	a	basic	data	structure
• Last	in,	first	out	behavior	(LIFO)
• Two	operations

• Push	(add	item	to	top	of	stack)
• Pop	(remove	item	from	top	of	stack)

Oldest	data

Newest	data

Push	(add	data	item)

Pop	(remove	and	return	item)

• Apply	stack	data	structure	to	memory
• Store	local	(automatic)	variables
• Maintain	state	for	functions	(e.g.,	where	to	return)

• Organized	into	units	called	frames
• One	frame	represents	all	of	the	information	for	one	
function.
• Sometimes	called	activation	records

“The”	Stack

Memory	Model

• Stack	starts	at	the	highest	
memory	addresses,	grows	
into	lower	addresses.

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

Stack	Frames

• As	functions	get	called,
new	frames	added	to	stack.

• Example:	Lab	4
• main	calls	get_values()
• get_values calls	read_float()
• read_float calls	I/O	library

main

0xFFFFFFFF

get_values

read_float

(I/O	library)

Stack	Frames

• As	functions	return,
frames	removed	from	stack.

• Example:	Lab	4
• I/O	library	returns	to	read_float
• read_float returns	to	get_values
• get_values returns	to	main

main

0xFFFFFFFF

get_values

read_float

(I/O	library)

All	of	this	stack	growing/shrinking	happens	automatically	
(from	the	programmer’s	perspective).

What	is	responsible	for	creating	
and	removing	stack	frames?
A. The	user

B. The	compiler

C. C	library	code

D. The	operating	system

E. Something	/	someone	else

Insight:	EVERY	function	needs	a	stack	
frame.		Creating	/	destroying	a	stack	
frame	is	a	(mostly)	generic	procedure.

Stack	Frame	Contents
• What	needs	to	be	stored	in	a	stack	frame?
• Alternatively:	What	must a	function	know	/	access?

• Hint:	At	least	5	things

main

0xFFFFFFFF

get_values

read_float

Stack	Frame	Contents

• What	needs	to	be	stored	in	a	stack	frame?
• Alternatively:	What	must a	function	know?

• Local	variables
• Previous	stack	frame	base	address
• Function	arguments
• Return	value
• Return	address

• Saved	registers
• Spilled	temporaries

main

0xFFFFFFFF

function	1

function	2

Local	Variables

If	the	programmer	says:
int x = 0;

Where	should	x	be	stored?
(Recall	basic	stack	data	structure)

Which	memory	address	is	that?

main

0xFFFFFFFF

function	1

function	2

X	goes	here

0x????????

How	should	we	determine	the	
address	to	use	for	storing	a	new	local	
variable?

A. The	programmer	specifies	the	variable	location.

B. The	CPU	stores	the	location	of	the	current	stack	frame.

C. The	operating	system	keeps	track	of	the	top	of	the	
stack.

D. The	compiler	knows	/	determines	where	the	local	data	
for	each	function	will	be	as	it	generates	code.

E. The	address	is	determined	some	other	way.

• Compile	time	(static)
• Information	that	is	known	by	analyzing	your	program
• Independent	of	the	machine	and	inputs

• Run	time	(dynamic)
• Information	that	isn’t	known	until	program	is	running
• Depends	on	machine	characteristics	and	user	input

The	Compiler	Can…

• Determine	how	much	space	you	need	on	the	stack	
to	store	local	variables.

• Insert	IA32	instructions	for	you	to	set	up	the	stack	
for	function	calls.
• Create	stack	frames	on	function	call
• Restore	stack	to	previous	state	on	function	return

• Perform	type	checking,	etc.

Current	Stack	
Frame

Local	Variables

• Compiler	can	allocate	N	bytes	on	the	stack	by	
subtracting	N	from	the	“stack	pointer”:	%esp

Current	Stack	
Frame

esp

esp - N

N	bytes

The	Compiler	Can’t…
• Predict	user	input.

int main() {

int x = get_user_input();

if (x > 5) {

funcA(x);

} else {

funcB();

}

}

main

0xFFFFFFFF

funcBfuncA ???

The	Compiler	Can’t…
• Predict	user	input.

• Assume	a	function	will	always	be	at	a	certain	address	
on	the	stack.

Alternative:	create	stack	
frames	relative	to	the	current	
(dynamic)	state	of	the	stack.

main

0xFFFFFFFF

funcBfuncA ???

funcB

Stack	Frame	Location

• Where	in	memory	is	the	current	stack	frame?

main

0xFFFFFFFF

function	1

function	2

Current	top	of	stack

Current	bottom	of	stack

Recall:	IA32	Registers

%eip

General	purpose
registers

Current	stack	top

Current	stack	frame

Instruction	pointer	(PC)

CF ZF SF OF Condition	codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Stack	Frame	Location

• Where	in	memory	is	the	current	stack	frame?

• Maintain	invariant:
• The	current	function’s
stack	frame	is	always
between	the	addresses
stored	in	%esp and	%ebp

• %esp:	stack	pointer
• %ebp:	frame	pointer	(base	pointer) main

0xFFFFFFFF

function	1

function	2

%esp

%ebp

Stack	Frame	Location

• Compiler	ensures	that	this	invariant	holds.
• We’ll	see	how	a	bit	later.

• This	is	why	all	local
variables	we’ve	seen
in	IA32	are	relative
to	%ebp or	%esp!

main

0xFFFFFFFF

function	1

function	2

%esp

%ebp

How	would	we	implement	pushing	x	
to	the	top	of	the	stack	in	IA32?
A. Increment	%esp

Store	x	at	(%esp)

B. Store	x	at	(%esp)
Increment	%esp

C. Decrement	%esp
Store	x	at	(%esp)

D. Store	x	at	(%esp)
Decrement	%esp

E. Copy	%esp to	%ebp
Store	x	at	(%ebp) main

0xFFFFFFFF

function	1

function	2

X	goes	here
%esp

(Top	of	stack)

%ebp
(Frame	start)

Push	&	Pop

• IA32	provides	convenient	instructions:
• pushl src

• Move	stack	pointer	up	by	4	bytes subl $4, %esp
• Copy	‘src’	to	current	top	of	stack movl src, (%esp)

• popl dst
• Copy	current	top	of	stack	to	‘dst’ movl (%esp), dst
• Move	stack	pointer	down	4	bytes addl $4, %esp

• src and	dst are	the	contents	of	any	register

Local	Variables

• More	generally,	we	can	make	space	on	the	stack	for	
N	bytes	by	subtracting	N	from	%esp

Current	Stack	
Frame

Current	Stack	
Frame

esp esp - N
N	bytes

New	variable	

Local	Variables

• More	generally,	we	can	make	space	on	the	stack	for	
N	bytes	by	subtracting	N	from	%esp
• When	we’re	done,	free	the	space	by	adding	N	back	
to	%esp

Current	Stack	
Frame

Current	Stack	
Frame

esp

esp - N

N	bytes

New	variable	

Stack	Frame	Contents

• What	needs	to	be	stored	in	a	stack	frame?
• Alternatively:	What	must a	function	know?

• Local	variables
• Previous	stack	frame	base	address
• Function	arguments
• Return	value
• Return	address

• Saved	registers
• Spilled	temporaries

main

0xFFFFFFFF

function	1

function	2

Stack	Frame	Relationships

• If	function	1	calls	function	2:
• function	1	is	the	caller
• function	2	is	the	callee

• With	respect	to	main:
• main	is	the	caller
• function	1	is	the	callee

main

0xFFFFFFFF

function	1
(caller)

function	2
(callee)

Where	should	we	store	all	this	stuff?

A. In	registers
B. On	the	heap
C. In	the	caller’s	stack	frame
D. In	the	callee’s stack	frame
E. Somewhere	else

Previous	stack	frame	base	address
Function	arguments
Return	value
Return	address

Calling	Convention

• You	could	store	this	stuff	wherever	you	want!
• The	hardware	does	NOT	care.
• What	matters:	everyone	agrees	on	where	to	find	the	
necessary	data.

• Calling	convention:	agreed	upon	system	for	
exchanging	data	between	caller	and	callee

IA32	Calling	Convention	(gcc)

• In	register	%eax:
• The	return	value

• In	the	callee’s stack	frame:
• The	caller’s	%ebp value	(previous	frame	pointer)

• In	the	caller’s	frame	(shared	with	callee):
• Function	arguments
• Return	address	(saved	PC	value)

IA32	Calling	Convention	(gcc)

• In	register	%eax:
• The	return	value

• In	the	callee’s stack	frame:
• The	caller’s	%ebp value	(previous	frame	pointer)

• In	the	caller’s	frame	(shared	with	callee):
• Function	arguments
• Return	address	(saved	PC	value)

IA32	Calling	Convention	(gcc)

• In	register	%eax:
• The	return	value

• In	the	callee’s stack	frame:
• The	caller’s	%ebp value	(previous	frame	pointer)

• In	the	caller’s	frame	(shared	with	callee):
• Function	arguments
• Return	address	(saved	PC	value)

Frame	Pointer

• Must	maintain	invariant:
• The	current	function’s	stack	frame	is	always
between	the	addresses	stored	in	%esp and	%ebp

• Must	adjust	%esp,	%ebp on	call	/	return.

caller

%esp

%ebp …

callee

Frame	Pointer

• Must	maintain	invariant:
• The	current	function’s	stack	frame	is	always
between	the	addresses	stored	in	%esp and	%ebp

• Immediately	upon	calling	a	function:
1. pushl %ebp

caller

%esp

…%ebp

caller’s	%ebp value

callee

Frame	Pointer

• Must	maintain	invariant:
• The	current	function’s	stack	frame	is	always
between	the	addresses	stored	in	%esp and	%ebp

• Immediately	upon	calling	a	function:
1. pushl %ebp
2. Set	%ebp =	%esp

caller

%esp

…%ebp

caller’s	%ebp value

callee

Frame	Pointer

• Must	maintain	invariant:
• The	current	function’s	stack	frame	is	always
between	the	addresses	stored	in	%esp and	%ebp

• Immediately	upon	calling	a	function:
1. pushl %ebp
2. Set	%ebp =	%esp
3. Subtract	N	from	%esp

caller

%esp

…%ebp

caller’s	%ebp value

Callee can	now	execute.

callee

Frame	Pointer

• Must	maintain	invariant:
• The	current	function’s	stack	frame	is	always
between	the	addresses	stored	in	%esp and	%ebp

• To	return,	reverse	this:

caller

%esp

…%ebp

caller’s	%ebp value

Frame	Pointer

• Must	maintain	invariant:
• The	current	function’s	stack	frame	is	always
between	the	addresses	stored	in	%esp and	%ebp

• To	return,	reverse	this:
1. set	%esp =	%ebp

caller

%esp

…%ebp

caller’s	%ebp value

Frame	Pointer

• Must	maintain	invariant:
• The	current	function’s	stack	frame	is	always
between	the	addresses	stored	in	%esp and	%ebp

• To	return,	reverse	this:
1. set	%esp =	%ebp
2. popl %ebp

caller

%esp

…%ebp

caller’s	%ebp value

Frame	Pointer

• Must	maintain	invariant:
• The	current	function’s	stack	frame	is	always
between	the	addresses	stored	in	%esp and	%ebp

• To	return,	reverse	this:
1. set	%esp =	%ebp
2. popl %ebp

caller

%esp

…%ebpBack	to	where	we	started.

IA32	has	another	convenience	
instruction	for	this:	leave

Recall:	Assembly	While	Loop

some_function:
pushl %ebp
movl %esp, %ebp

Your code here

movl $10, %eax
leave
ret

Set	up	the	stack	frame
for	this	function.

Store	return	value	in	%eax.

Restore	caller’s	%esp,	%ebp.

Lab	4:	swap.s

swap:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

Your code here

leave

ret

IA32	Calling	Convention	(gcc)

• In	register	%eax:
• The	return	value

• In	the	callee’s stack	frame:
• The	caller’s	%ebp value	(previous	frame	pointer)

• In	the	caller’s	frame	(shared	with	callee):
• Function	arguments
• Return	address	(saved	PC	value)

Function	Arguments

• Arguments	are	pushed	onto	the	stack	before	the	
call	instruction	jumps	into	the	callee.

callee

caller

…

caller’s	%ebp value
Callee arguments

Instructions	in	Memory

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data

Heap

funcA:
…
call funcB
…

funcB:
pushl %ebp
movl %esp, %ebp
…

Function	A

Function	B

…

Program	Counter

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Text	Memory	RegionRecall:		PC	stores	the	address	of	
the	next	instruction.
(A	pointer	to	the	next	instruction.)

What	do	we	do	now?

Follow	PC,	fetch	instruction:

addl $5, %ecx

Program	Counter

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Text	Memory	RegionRecall:		PC	stores	the	address	of	
the	next	instruction.
(A	pointer	to	the	next	instruction.)

What	do	we	do	now?

Follow	PC,	fetch	instruction:

addl $5, %ecx

Update	PC	to	next	instruction.

Execute	the	addl.

Program	Counter

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Recall:		PC	stores	the	address	of	
the	next	instruction.
(A	pointer	to	the	next	instruction.)

What	do	we	do	now?

Follow	PC,	fetch	instruction:

movl $ecx, -4(%ebp)

Text	Memory	Region

Program	Counter

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Recall:		PC	stores	the	address	of	
the	next	instruction.
(A	pointer	to	the	next	instruction.)

What	do	we	do	now?

Follow	PC,	fetch	instruction:

movl $ecx, -4(%ebp)

Update	PC	to	next	instruction.

Execute	the	movl.

Text	Memory	Region

Program	Counter

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

Recall:		PC	stores	the	address	of	
the	next	instruction.
(A	pointer	to	the	next	instruction.)

What	do	we	do	now?

Keep	executing	in	a	straight	line	
downwards	like	this	until:

We	hit	a	jump	instruction.
We	call	a	function.

Text	Memory	Region

Changing	the	PC:	Jump

• On	a	jump:
• Check	condition	codes
• Set	PC	to	execute	elsewhere	(not	next	instruction)

• Do	we	ever	need	to	go	back	to	the	instruction	after	
the	jump?

Maybe	(and	if	so,	we’d	have	a	label	to	jump	back	to),	but	usually	not.

Changing	the	PC:	Functions

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Text	Memory	Region

Changing	the	PC:	Functions

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Set	up	function	B’s	stack.

Text	Memory	Region

Changing	the	PC:	Functions

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Set	up	function	B’s	stack.

Execute	the	body	of	B,	produce	
result	(stored	in	%eax).

Text	Memory	Region

Changing	the	PC:	Functions

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Set	up	function	B’s	stack.

Execute	the	body	of	B,	produce	
result	(stored	in	%eax).

Restore	function	A’s	stack.

Text	Memory	Region

Changing	the	PC:	Functions

Program	
Counter	(PC)

funcA:
addl $5, %ecx
movl %ecx, -4(%ebp)
…
call funcB
addl %eax, %ecx
…

funcB:
pushl %ebp
movl %esp, %ebp
…
movl $10, %eax
leave
ret

What	we’d	like	this	to	do:

Return:
Go	back	to	what	we	were	doing	
before	funcB started.

Unlike	jumping,	we	intend	to	go	back!

Text	Memory	Region

