
Pointers	and	Memory
9/29/16

Recall:	Allocating	(Heap)	Memory

• The	standard	C	library	(#include	<stdlib.h>)	includes	
functions	for	allocating	memory

void *malloc(size_t size)
• Allocate	size bytes	on	the	heap	and	return	a	pointer	to	
the	beginning	of	the	memory	block

void free(void *ptr)
• Release	the		malloc()ed block	of	memory	starting	at
ptr back	to	the	system

What	do	you	expect	to	happen	to	
the	100-byte	chunk	if	we	do	this?
//	What	happens	to	these	100	bytes?

int *ptr = malloc(100);

ptr = malloc(2000);

A. The	100-byte	chunk	will	be	lost.

B. The	100-byte	chunk	will	be	automatically	freed	(garbage	collected)	by	the	OS.

C. The	100-byte	chunk	will	be	automatically	freed	(garbage	collected)	by	C.

D. The	100-byte	chunk	will	be	the	first	100	bytes	of	the	2000-byte	chunk.

E. The	100-byte	chunk	will	be	added	to	the	2000-byte	chunk	(2100	bytes	total).

Memory	Leak

• Memory	that	is	allocated,	and	not	freed,	for	which	
there	is	no	longer	a	pointer.

• In	many	languages	(Java,	Python,	…),	this	memory	
will	be	cleaned	up	for	you.
• “Garbage	collector”	finds	unreachable	memory	blocks,	
frees	them.
• C	doesn’t	does	NOT	do	this	for	you!

Why	doesn’t	C	do	garbage	
collection?
A. It’s	impossible	in	C.

B. It	requires	a	lot	of	resources.

C. It	might	not	be	safe	to	do	so.	(break	programs)

D. It	hadn’t	been	invented	at	the	time	C	was	developed.

E. Some	other	reason.

Memory	Bookkeeping
• To	free	a	chunk,	you	MUST	call	free	with	the	same	
pointer	that	malloc gave	you.			(or	a	copy)

• The	standard	C	library	keeps	track	of	the	chunks	that	
have	been	allocated	to	your	program.
• This	is	called	“metadata”	– data	about	your	data.

• Wait,	where	does	it	store	that	information?
• It’s	not	like	it	can	use	malloc()	to	get	memory…

Where	should	we	store	this	
metadata?
A. In	the	CPU

B. In	main	memory

C. On	the	hard	drive

D. Somewhere	else

Metadata
Heap

int *iptr = malloc(8);

Metadata
Heap

First
Byte

… … …

… … … Last	
Byte

int *iptr = malloc(8);

Metadata
Heap

Meta Data

Meta Data

First
Byte

… … …

… … … Last	
Byte

int *iptr = malloc(8);

• C	Library:	“Let	me	record	this	
allocation’s	info	here.”
• Size	of	allocation
• Maybe	other	info

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last	
Byte

Meta Data Meta Data

Other

Data

int *iptr = malloc(8);

• For	all	you	know,	there	could	be	
another	chunk	after	yours.

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last	
Byte

Meta Data Meta Data

Other

Data

int *iptr = malloc(8);

• Takeaway:	very	important	that	you	
stay	within	the	memory	chunks	
you	allocate.

• If	you	corrupt	the	metadata,	you	
will	get	weird	behavior.

Valgrind is	your	new	best	friend.

Pointers	as	Arrays

• “Why	did	you	allocate	8	bytes	for	an	int pointer?		
Isn’t	an	int only	4	bytes?”
• int *iptr = malloc(8);

• Recall:	an	array	variable	acts	like	a	pointer	to	a	
block	of	memory.		The	number	in	[]	is	an	offset	
from	bucket	0,	the	first	bucket.

• We	can	treat	pointers	in	the	same	way!

Heap

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers	as	Arrays

Pointers	as	Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers	as	Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

The	C	compiler	knows	how	big	an	
integer	is.

As	an	alternative	way	of	dereferencing,	
you	can	use	[]’s	like	an	array.

The	C	compiler	will	jump	ahead	the	
right	number	of	bytes,	based	on	the	
type.

Pointers	as	Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers	as	Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1.	Start	from	the	base	of	iptr.

Pointers	as	Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1.	Start	from	the	base	of	iptr.

2.	Skip	forward	by	
the	size	of	two	ints.

Pointers	as	Arrays

Heap

iptr[0]

iptr[1]

7

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1.	Start	from	the	base	of	iptr.

2.	Skip	forward	by	
the	size	of	two	ints.

3.	Treat	the	result	as	an	int.
(Access	the	memory	location
like	a	typical	dereference.)

Pointers	as	Arrays

• This	is	one	of	the	most	common	ways	you’ll	use	
pointers:
• You	need	to	dynamically	allocate	space	for	a	collection	
of	things	(ints,	structs,	whatever).
• You	don’t	know	how	many	at	compile	time.

float *student_gpas = NULL;

student_gpas = malloc(n_students * sizeof(int));

…

student_gpas[0] = …;

student_gpas[1] = …;

Pointer	Arithmetic

• Addition	and	subtraction	work	on	pointers.

• C	automatically	increments	by	the	size	of	the	type	
that’s	pointed	to.

Pointer	Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointer	Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

int *iptr2 = iptr + 3;

Skip	ahead	by	3	times	the	size	of	iptr’s
type	(integer,	size:	4	bytes).

Other	uses	for	pointers…

1. Allowing	a	function	to	modify	a	variable.

2. Allowing	a	function	to	return	memory.

3. Many	more…

Function	Arguments

• Arguments	are	passed	by	value
• The	function	gets	a	separate	copy of	the	passed	variable

int func(int a, int b) {

a = a + 5;
return a - b;

}

int main() {

int x, y; // declare two integers
x = 4;

y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

func:
a:

b:

4

7

4

7

4

7

Function	Arguments

• Arguments	are	passed	by	value
• The	function	gets	a	separate	copy of	the	passed	variable

int func(int a, int b) {

a = a + 5;
return a - b;

}

int main() {

int x, y; // declare two integers
x = 4;

y = 7;
y = func(x, y);
printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

4

7

It	doesn’t	matter	what	func
does	with	a	and	b.		The	value	
of	x	in	main	doesn’t	change.

Function	Arguments

• Arguments	can	be	pointers!
• The	function	gets	the	address	of	the	passed	variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

Pointer	Arguments

• Arguments	can	be	pointers!
• The	function	gets	the	address	of	the	passed	variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

x: 4

Pointer	Arguments

• Arguments	can	be	pointers!
• The	function	gets	the	address	of	the	passed	variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

func:
a:

x: 4

Pointer	Arguments

• Arguments	can	be	pointers!
• The	function	gets	the	address	of	the	passed	variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

func:
a:

x: 9

Dereference	
pointer,	set	value	
that	a	points	to.

Pointer	Arguments

• Arguments	can	be	pointers!
• The	function	gets	the	address	of	the	passed	variable!

void func(int *a) {
*a = *a + 5;

}

int main() {
int x = 4;

func(&x);
printf(“%d”, x);

}

Stack

main:

x: 9

Prints:	9

Haven’t	we	seen	this	
somewhere	before?

Readfile Library

• We’ve	seen	saw	this	in	lab	2	and	4	with	read_int
and	read_float.
• This	is	why	you	needed	an	&.
• e.g.,

int value;
status_code = read_int(&value);

• You’re	asking	read_int to	modify	a	parameter,	so	
you	give	it	a	pointer	to	that	parameter.
• read_int will	dereference	it	and	set	it.

Other	uses	for	pointers…

1. Allowing	a	function	to	modify	a	variable.

2. Allowing	a	function	to	return	memory.

3. Many	more…

Can	you	return	an	array?

• Suppose	you	wanted	to	write	a	function	that	copies	an	
array	of	integers.

copy_array(int array[], int len) {
int result[len];
for(int i=0; i<len; i++)

result[i] = array[i];
return result;

}
This	is	a	terrible	idea.
(Don’t	worry,	compiler	wont	let	you	do	this	anyway.)

How	many	bugs	can	you	find?
A=1,	B=2,	…

Consider	the	memory…

copy_array5(int array[]) {

int result[5];

for(int i=0; i<5; i++)

result[i] = array[i];

return result;

}

(In main):

copy = copy_array(…)

copy_array5:

main:

copy:

result

Consider	the	memory…

main:

copy:

resultresult

copy_array5(int array[]) {

int result[5];

for(int i=0; i<5; i++)

result[i] = array[i];

return result;

}

(In main):

copy = copy_array(…)

copy_array5:

Consider	the	memory…

copy_array5(int array[]) {

int result[5];

for(int i=0; i<5; i++)

result[i] = array[i];

return result;

}

(In main):

copy = copy_array(…)
main:

copy:

When	we	return	from	copy_array,	
its	stack	frame	is	gone!

Left	with	a	pointer	to	nowhere.

Using	the	Heap
int *copy_array(int array[], int len) {

int *result = malloc(len * sizeof(int));

for(int i=0; i<len; i++)

result[i] = array[i];

return result;

}

0x0

0xFFFFFFFF

Operating	system

Stack

Text
Data
Heap

result:

malloc memory	is	on	the	heap.

Doesn’t	matter	what	happens	on	the	
stack	(function	calls,	returns,	etc.)

Other	uses	for	pointers…
1. Allowing	a	function	to	modify	a	variable.

2. Allowing	a	function	to	return	memory.

• These	are	both	very	common.
You	should	be	using	them	in	lab	4.

3. Many	more…
• Avoiding	copies	(structs …	coming	up	shortly)
• Sharing	between	threads	(end	of	the	semester)

Pointers	to	Pointers
• Why	stop	at	just	one	pointer?

int **double_iptr;

• “A	pointer	to	a	pointer	to	an	int.”
• Dereference	once:	pointer	to	an	int
• Dereference	twice:	int

• Commonly	used	to:
• Allow	a	function	to	modify	a	pointer	(data	structures)
• Dynamically	create	an	array	of	pointers.
• (Program	command	line	arguments	use	this.)

int main(int argv, char** argv)

Recall:	structs on	the	heap
struct student {

char name[40];

int age;

double gpa;

}

struct student *bob = NULL;

bob = malloc(sizeof(struct student));

Pointers	to	Structs -> operator

struct student *bob = NULL;

bob = malloc(sizeof(struct student));

(*bob).age = 20;

bob->gpa = 3.5;

The	-> operator	is	a	shortcut	to	do	a	dereference	(*)	
and	a	field	access	(.).

Arrays	vs.	Pointers

How	are	array	variables	different	from	pointer	
variables?	Think	of	as	many	differences	as	you	can.

• Declared	differently.
int arr[5];
int *ptr;
ptr = malloc(5 * sizeof(int));

• Stored	differently
• Stack
• Heap

• Pointers	are	Lvalues

Lvalues

• Anything	that	can	be	on	the	left-hand	side	of	an	
assignment.
• Examples:
• int
• float
• Structs (e.g.	struct student)
• pointers

• Arrays	are	not	lvalues.	You	can’t	move	a	different	
address	into	an	array	variable.

Struct Parameters:	Pass	by	Value:
void test(struct student s1){

s1.age = 20;
s1.name[0] = ‘X’;

}
int main() {
struct student jo;
strcpy(jo.name, “Jo”);
jo.age = 18;
test(jo);

}

test:

main:

STACK

Q1: What is the value of the
argument jo?

Q2: What value does param s1 get?
Q3: Draw the Stack
Q4: What is value of jo after the

function call?

