
IA32
9/22/16

From	last	time…

movl %ebp, %ecx

subl $16, %ecx

movl (%ecx), %eax

orl %eax, -8(%ebp)

negl %eax

movl %eax, 4(%ecx)

name value

%eax ?

%ecx ?

%ebp 0x456C

address value

0x455C 7

0x4560 11

0x4564 5

0x4568 3

0x456C
…

How	would	you	do	this	in	IA32?
x	is 2	at	%ebp-8,		y	is 3	at	%ebp-12,		z	is 2	at	%ebp-16

C code: z = x ^ y

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

How	would	you	do	this	in	IA32?
x	is 2	at	%ebp-8,		y	is 3	at	%ebp-12,		z	is 2	at	%ebp-16

C code: z = x ^ y

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %eax, %edx
movl %eax, -16(%ebp)

A:
movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %eax, %edx
movl %eax, -8(%ebp)

C:

movl -8(%ebp), %eax
movl -12(%ebp), %edx
xorl %edx, %eax
movl %eax, -16(%ebp)

B:
movl -16(%ebp), %eax
movl -12(%ebp), %edx
xorl %edx, %eax
movl %eax, -8(%ebp)

D:

E:	none	of	these	implements	z = x ^ y

How	would	you	do	this	in	IA32?
x	is 2	at	%ebp-8,		y	is 3	at	%ebp-12,		z	is 2	at	%ebp-16

x = y >> 3 | x * 8

5

name value

%eax

%edx

%ebp 0x1270

0x1260 2 z

0x1264 3 y

0x1268 2 x

0x126c

0x1270

(1)z = x ^ y
movl -8(%ebp), %eax # R[%eax] ß x
movl -12(%ebp), %edx # R[%edx] ß y
xorl %edx, %eax # R[%eax] ß x ^ y
movl %eax, -16(%ebp) # M[R[%ebp-16]] ß x^y

(2)x = y >> 3 | x * 8
movl -8(%ebp), %eax # R[%eax] ß x
imull $8, %eax # R[%eax] ß x*8
movl -12(%ebp), %edx # R[%edx] ß y
rshl $3, %edx # R[%edx] ß y >> 3
orl %eax, %edx # R[%edx] ß y>>3 | x*8
movl %edx, -8(%ebp) # M[R[%ebp-8]] ß result

6

name value

%eax

%edx

%ebp 0x1270

0x1260 z

0x1264 y

0x1268 x

0x126c

0x1270

Recall	Memory	Operands

• displacement(%reg)
• e.g., addl %eax, -8(%ebp)

• IA32	allows	a	memory	operand	as	the	source	or	
destination,	but	NOT	BOTH
• One	of	the	operands	must	be	a	register

• This	would	not be	allowed:
• addl -4(%ebp), -8(%ebp)
• If	you	wanted	this,	movl one	value	into	a	register	first

Unconditional	Jumping	/	Goto

int main() {
int a = 10;
int b = 20;

goto label1;
a = a + b;

label1:
return;

push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
jmp label1
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax

label1:
leave

A	label	is	a	place	you	might jump	to.

Labels	are	ignored	except	for	goto/jumps.

(Skipped	over	if	encountered)

int x = 20;
L1:
int y = x + 30;

L2:
printf(“%d, %d\n”, x, y);

Unconditional	Jumping	/	Goto

int main() {
int a = 10;
int b = 20;

goto label1;
a = a + b;

label1:
return;

push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
jmp label1
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax

label1:
leave

jmp isn’t	very	useful	by	itself…

We’d	like	to	use	branch	instructions	for:
• if/else
• switch
• for	loops
• while	loops

But	if	jmp were	our	only	branch	instruction,	the	
closest	we	could	get	would	be	an	infinite	loop.

We	need	conditional jumps.

Condition	Codes	(or	Flags)

• Set	in	two	ways:
1. As	“side	effects”	produced	by	ALU
2. In	response	to	explicit	comparison	instructions

• IA-32,	condition	codes	tell	you:
• If	the	result	is	zero	(ZF)
• If	the	result’s	first	bit	is	set	(negative	if	signed)	(SF)
• If	the	result	overflowed	(assuming	unsigned)	(CF)
• If	the	result	overflowed	(assuming	signed)	(OF)

Processor	State	in	Registers
• Temporary	data
%eax - %edi

• Location	of	runtime	stack
%ebp, %esp

• Location	next	instruction	
%eip

• Status	of	recent	tests	
%EFLAGS:
CF, ZF, SF, OF

%eip

General	purpose
registers

Current	stack	top

Current	stack	frame

Instruction	pointer	
(PC)

CF ZF SF OF Condition	codes

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

Instructions	that	set	condition	codes
1. Arithmetic/logic	side	effects	(addl,	subl,	orl,	etc.)

2. CMP and	TEST:
cmpl b,a like	computing	a-b without	storing	result
• Sets	OF if	overflow,	Sets	CF if	carry-out,	
Sets	ZF if	result	zero,	Sets	SF if	results	is	negative

testl b,a like	computing	a&b without	storing	result		
• Sets	ZF if	result	is	zero,	sets	SF if	a&b < 0
OF and	CF flags	are	zero	(no	overflow	with	&)

Which	flags	would	this	subl set?

• Suppose	%eax holds	5,	%ecx holds	7

subl $5, %eax

A. ZF
B. SF
C. CF	and	ZF
D. CF	and	SF
E. CF,	SF,	and	CF

If	the	result	is	zero	(ZF)
If	the	result’s	first	bit	is	set	(negative	if	signed)	(SF)
If	the	result	overflowed	(assuming	unsigned)	(CF)
If	the	result	overflowed	(assuming	signed)	(OF)

Which	flags	would	this	cmpl set?

• Suppose	%eax holds	5,	%ecx holds	7

cmpl %ecx, %eax

A. ZF
B. SF
C. CF	and	ZF
D. CF	and	SF
E. CF,	SF,	and	CF

If	the	result	is	zero	(ZF)
If	the	result’s	first	bit	is	set	(negative	if	signed)	(SF)
If	the	result	overflowed	(assuming	unsigned)	(CF)
If	the	result	overflowed	(assuming	signed)	(OF)

Conditional	Jumping
• Jump	based	on	which	condition	codes	are	set

Condition Description
jmp 1 Unconditional
je ZF Equal	/	Zero
jne ~ZF Not	Equal	/	Not	Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater	(Signed)
jge ~(SF^OF) Greater	or	Equal	(Signed)
jl (SF^OF) Less	(Signed)
jle (SF^OF)|ZF Less	or	Equal	(Signed)
ja ~CF&~ZF Above	(unsigned		jg)
jb CF Below	(unsigned)

Jump	
Instructions:
(fig.	3.12)

You	do	not
need	to	
memorize
these.

• Suppose	user	gives	us	a	
value	via	scanf

• We	want	to	check	to	
see	if	it	equals	42
• If	so,	add	5
• If	not,	subtract	10

int userval;

scanf(“%d”, &userval);

if (userval == 42) {

userval += 5;

} else {

userval -= 10;

}

…

Example	Scenario

How	would	we	use	jumps/CCs	for	this?
int userval;

scanf(“%d”, &userval);

if (userval == 42) {

userval += 5;

} else {

userval -= 10;

}

…

Assume	userval is	stored	in	%eax at	this	point.

How	would	we	use	jumps/CCs	for	this?
int userval;

scanf(“%d”, &userval);

if (userval == 42) {

userval += 5;

} else {

userval -= 10;

}

…

Assume	userval is	stored	in	%eax at	this	point.

cmpl $42, %eax
jne L2

L1:
subl $10, %eax
jmp DONE

L2:
addl $5, %eax

DONE:
…

(B)cmpl $42, %eax
je L2

L1:
subl $10, %eax
jmp DONE

L2:
addl $5, %eax

DONE:
…

(A) cmpl $42, %eax
jne L2

L1:
addl $5, %eax
jmp DONE

L2:
subl $10, %eax

DONE:
…

(C)

Loops	via goto

Goal:	translate	for	loops	and	while	loops	to	IA32.

• We	know	how	to	translate	a	for	loop	to	a	while	
loop,	so	let’s	focus	on	while	loops.

• Intermediate	step:	translate	c	code	with	a	while	
loop	into	c	code	with	goto statements.

Translate	whileà goto

int i=1, j=100, k=0;
while(i < j){
i *= 2;
j -= i;

}
k = j + i;

Translate	gotoà IA32

int i=1, j=100, k=0;

L1:
if(i >= j) goto L2;
i *= 2;
j -= i;
goto L1;

L2:
k = j + i;

Hint:
cmpl
jge
jmp

0x8B00 2 k

0x8B04 3 j

0x8B08 2 i

0x8B0c

0x8B10 (%ebp)

