
Gates	and	Circuits
9/13/16

You’re	going	to	want	
scratch	paper	today	…	
borrow	some	if	needed.

The	system	stack
c	program

compiler

shell

operating	system

memory

CPU

circuits

gates

transistors

wires

software

hardware

electrical
engineering

This	class
Starting	this	week

How	a	Computer	Runs	a	Program

What	we	know	so	far:
• Much	of	the	C	programming	language

• types,	operators,	arrays,	parameter	passing,	some	structs
• Binary	encodings	&	sizes	for	different	C	types

• char,	unsigned	char,	int,	unsigned	int,	…
• How	to	perform binary	operations		(Add,	Sub)

Binary	Program
Operating	System

Computer	Hardware

How	instructions	&	data	are	encoded

OS	Abstractions,	Resource	management
How	underlying	HW	organized	&	works

C	Program How	C	program	is	run	on		System:

Von	Neumann	Architecture
• A	computer	is	a	generic	computing	machine:

• Based	on	Alan	Turing’s	Universal	Turing	Machine
• Stored	program	model:	computer	stores	program	rather
than	encoding	it	(feed	in	data	and	instructions)		

• No	distinction	between	data	and	instructions	memory

• 5	parts	connected	by	buses	(wires):	
• Memory,	Control,	Processing,	Input,	Output

Memory Cntrl Unit	|	Processing	Unit

cntrl bus
addr bus

data	bus

Input/Output

Memory

• Stores	instructions	and	data.
• Addressable,	like	array	indices.
• addr 0,	1,	2,	…

• Memory	Address	Register:	address	to	read/write		
• Memory	Data	Register:	value	to	read/write

Memory Cntrl Unit	|	Processing	Unit

cntrl bus
addr bus

data	bus

Input/Output

Central	Processing	Unit	(CPU)

• Processing	Unit:	executes	instructions	selected	by	
the	control	unit
• ALU	(arithmetic	logic	unit):	simple	functional	units:	
ADD,	SUB,	AND…
• Registers:	temporary	storage	directly	accessible	by	
instructions

• Control	unit:	determines	the	order	in	which	
instructions	execute
• PC:	program	counter:	address	of	next	instruction			
• IR:	instruction	register:	holds	current	instruction
• clock-based	control:		clock	signal+IR trigger	state	
changes

Input/Output

• Keyboard
• Files	on	the	hard	drive
• Network	communication

Memory Cntrl Unit	|	Processing	Unit

cntrl bus
addr bus

data	bus

Input/Output

First	Goal:	Build	a	model	of	the	CPU

Three	main	classifications	of	HW	circuits:
1. ALU:	implement	arithmetic	&	logic	functionality

(ex)	adder	to	add	two	values	together

2. Storage:	to	store	binary	values
(ex)	Register	File:	set	of	CPU	registers,		Also:	main	memory	(RAM)

3. Control:	support/coordinate	instruction	execution
(ex)	fetch	the	next	instruction	to	execute

Abstraction

User	/	Programmer
Wants	low	complexity

Applications
Specific	functionality

Software	library
Reusable	functionality

Complex	devices
Compute	&	I/O

Operating	system
Manage	resources

Abstraction

Complex	devices
Compute	&	I/O

Hardware Circuits
Logic Gates
Transistors

Here	be	dragons.
(Electrical	Engineering)

…
(Physics)

Logic	Gates
Input:				Boolean	value(s)		(high	and	low	voltages	for	1	and	0)	
Output:	Boolean	value,	the	result	of	a	Boolean	function	

A B A & B A | B ~A
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

a

b
out

out = a & b

And

a

b
out

out = a | b

Or

a out

out = ~a

Not

More	Logic	Gates

A B A NAND B A NOR B

0 0 1 1

0 1 1 0

1 0 1 0

1 1 0 0

a

b
out

out = ~(a | b)

NOR

a

b
out

out = ~(a & b)

NAND

Note	the	circle	on	the	
output.
This	means	“negate	it.”

Combinational	Logic	Circuits
• Build	up	higher	level	processor	functionality	from	
basic	gates.

Acyclic	Network		of	Gates

Inputs Outputs

Outputs	are	Boolean	functions	of	inputs.
Outputs	continuously	respond	to	changes	to	inputs.

What	does	this	circuit	output?
And Or Not

X

Y
Output

X Y OutA OutB OutC OutD OutE
0 0 0 1 0 1 0

0 1 0 1 0 0 1

1 0 1 0 1 1 1

1 1 0 0 1 1 0

Clicker	Choices

Build	new	gates	
• Build-up	XOR	from	basic	gates	(AND,	OR,	NOT)

A B A ^ B

0 0 0
0 1 1

1 0 1
1 1 0

Q:		When	is	A^B	==1?

A ^ B == (~A & B) | (A & ~B)

Which	of	these	is	an	XOR	circuit?

Draw	an	XOR	circuit	using	AND,	OR,	and	
NOT	gates.

I’ll	show	you	the	clicker	options	after	you’ve	
had	some	time.

And Or Not

Which	of	these	is	an	XOR	circuit?

A
B

A
B

A
B

A
B

E:	None	of	these	is	an	XOR.

A: B:

C: D:

Checking	the	XOR	circuit
A^B == (~A & B) | (A & ~B)

A:0 B:0 A^B:

A:0 B:1 A^B:

A:1 B:0 A^B:

A:1 B:1 A^B:

A

B out = A^B

0
1

1
0

Abstracting	the	XOR	circuit
A^B == (~A & B) | (A & ~B)

out = A^B

A

B

= XOR

out = A^BA

B

A B A ^ B
0 0 0

0 1 1

1 0 1

1 1 0

First	Goal:	Build	a	model	of	the	CPU
Three	main	classifications	of	HW	circuits:
1. ALU:	implement	arithmetic	&	logic	functionality

(ex)	adder	to	add	two	values	together

2. Storage:	to	store	binary	values
(ex)	Register	File:	set	of	CPU	registers

3. Control:	support/coordinate	instruction	execution
(ex)	fetch	the	next	instruction	to	execute

HW Circuits
Logic Gates
Transistors

Building	an	ALU	via	abstraction

Step	1:	zoom	in
• Build	circuits	for	each	operation	the	ALU	must	perform
• Arithmetic

• Integer	addition,	subtraction,	multiplication	…
• Floating	point	addition,	subtraction,	multiplication	...

• Logic
• Bitwise	operations:	AND,	OR,	…
• Shifts:	left,	right,	arithmetic

Step	2:	zoom	out
• Take	each	component	circuit	as	given.
• Connect	the	components	to	memory	and	control	circuits.

Addition	Circuits	via	abstraction

• We	want	to	build	an	N-bit	(e.g.	32-bit)	adder.

• Step	1:	design	a	1-bit	adder.

• Step	2:	string	N	1-bit	adders	together.

1-bit	adder

Inputs:	A,	B
Outputs:	sum,	cout

Let’s	fill	in	the	truth	table.

A B Sum(A+B) Cout

0 0
0 1

1 0
1 1

0

1

1

0

0

0

0

1

Which	of	these	circuits	is	a	one-bit	adder?
A B Sum(A+B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A
B

Sum

Cout

A
B

Sum

Cout

A
B

Cout

Sum A
B

Sum

Cout

A: B:

C: D:

E:	None	
of	these

What’s	missing?
• This	circuit	is	called	a	half-adder.

• A	one-bit	full-adder	takes	a	third	input:	cin.

0011010

+ 0001111

A

B
Sum

Cout

A B Sum(A+B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Which	of	these	is	a	full-adder?
Hint:	use	abstraction.	Start	with	two	half-adders	and	
connect	them	appropriately.

A B Cin Sum Cout
0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0
0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

A B Sum Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Half-Adder

Full-Adder

Which	of	these	is	a	full-adder?

A:

B:

C:

D:	None	
of	these.

HA
HA

sum

cout

sum
cout

coutA
B

cin

HA
HA

sum

cout

sum
cout

coutA
B

cin

HA
HA

sum sum
sum

cout

cout
A
B

cin

N-bit	adder	(ripple-carry	adder)

1-bit
adder

0

Cout

A0

B0 Sum0

1-bit
adder

Cout

A1

B1 Sum1

1-bit
adder

Cout

A3

B3 Sum3

1-bit
adder

Cout

A2

B2 Sum2

…
1-bit
adder

Cout

AN-1

BN-1 SumN-1

3-bit	ripple-carry	adder

1-bit
adder

0

0
1

1-bit
adder

1
1

1-bit
adder

0
0

010	(2)
+	011	(3) = 3-bit

adder

A0

A1
A2

B0
B1
B2

Carry	out

Carry	in

Sum0

Sum1

Sum2

Arithmetic	Logic	Unit	(ALU)

• One	component	that	knows	how	to	manipulate	bits	
in	multiple	ways
• Addition
• Subtraction
• Multiplication	/	Division
• Bitwise	AND,	OR,	NOT,	etc.

• Built	by	combining	components
• Take	advantage	of	sharing	HW	when	possible
(e.g.,	subtraction	using	adder)

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0
B1
B2

3-bit	inputs
A	and	B:

Or0

Or2

Or1

At	any	given	time,	we	
only	want	the	output	
from	ONE	of	these!

Simple	3-bit	ALU:	Add	and	bitwise	OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0
B1
B2

3-bit	inputs
A	and	B:

Or0

Or2

Or1

Extra	input:	control	signal	to	select	Sum	vs.	OR

Circuit	that	takes	
in	Sum0-2 /	Or0-2
and	only	outputs	
one	of	them,	

based	on	control	
signal.

Simple	3-bit	ALU:	Add	and	bitwise	OR

Which	of	these	circuits	lets	us	
select	between	two	inputs?

Control
Signal

Input	1

Input	2

Control
Signal

Input	1

Input	2

Control
Signal

Input	1

Input	2

A: B:

C:

Multiplexor:	Chooses	an	input	value
Inputs:		2N data	inputs,	N	signal	bits
Output:	is	one	of	the	2N input	values

• Control	signal	s,	chooses	the	input	for	output
• When	s	is	1:	choose	a,	when	s	is	0:	choose	b

out
b

s

a out = (s & a)|(~s &b)

1	bit	2-way	MUX

N-Way	Multiplexor
Choose	one	of	N	inputs,		need	log2	N	select	bits

D0

D3

Out

s0

s1

MUX4
D2

D1

s1 s0 choose
0 0 D0
0 1 D1
1 0 D2
1 1 D3

4-Way	Multiplexor

S	Input	to	
choose	D0

D0

s1
s0

.

Simple	3-bit	ALU:	Add	and	bitwise	OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0
B1
B2

3-bit	inputs
A	and	B:

Or0

Or2

Or1

Extra	input:	control	signal	to	select	Sum	vs.	OR

Multiplexer!

1.	Build	a	subtraction	circuit

• Start	with	a	4-bit	addition	circuit.
• Create	a	4-bit	subtraction	circuit.

2.	Build	an	ALU	that	does	+	and	-
• Use	one	4-bit	adder	circuit.
• This	adder	should	be	used	to	perform	addition	and	
subtraction.
• Add	control	circuitry	(a	multiplexor)	to	determine	
which	operation	gets	performed.

