Gates and Circuits

9/13/16

You're going to want

scratch paper today ...
borrow some if needed.




The system stack

C program

£ compiler
software c e
: shell

operating system

Starting this week I

This class =

memory
CPU
hardware
circuits
) gates
electrical transistors
engineering

wires



C Program

Binary Program

Operating System

Computer Hardware

What we know so far:

ow a Computer Runs a Program

How C program is run on System:
How instructions & data are encoded

OS Abstractions, Resource management

How underlying HW organized & works

* Much of the C programming language

* types, operators, arrays, parameter passing, some structs
* Binary encodings & sizes for different C types

e char, unsigned char, int, unsigned int, ...
* How to perform binary operations (Add, Sub)



Von Neumann Architecture

* A computer is a generic computing machine:

e Based on Alan Turing’s Universal Turing Machine

e Stored program model: computer stores program rather
than encoding it (feed in data and instructions)

* No distinction between data and instructions memory

5 parts connected by buses (wires):
 Memory, Control, Processing, Input, Output

Memory Cntrl Unit | Processing Unit Input/Output
addr bus
cntrl bus
data bus




Memory

e Stores instructions and data.

* Addressable, like array indices.
e addr 0, 1, 2, ...

 Memory Address Register: address to read/write
 Memory Data Register: value to read/write

Memory Cntrl Unit | Processing Unit Input/Output

addr bus

cntrl bus
data bus




Central Processing Unit (CPU)

* Processing Unit: executes instructions selected by

the control unit

e ALU (arithmetic logic unit): simple functional units:
ADD, SUB, AND...

e Registers: temporary storage directly accessible by
instructions

* Control unit: determines the order in which
Instructions execute
e PC: program counter: address of next instruction
* |IR: instruction register: holds current instruction

* clock-based control: clock signal+IR trigger state
changes




Input/Output

» Keyboard

e Files on the hard drive

* Network communication

Memory

Cntrl Unit | Processing Unit

Input/Output

addr bus

cntrl bus
data bus



First Goal: Build a model of the CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality
(ex) adder to add two values together

2. Storage: to store binary values
(ex) Register File: set of CPU registers, Also: main memory (RAM)

3. Control: support/coordinate instruction execution
(ex) fetch the next instruction to execute



Abstraction

« N
User / Programmer

Wants low complexity

< 4
a )
Applications
Specific functionality
< 4
e )

Software library
Reusable functionality

< 4
4 )
Operating system
D;
Manage resources
< 4

Complex devices

Compute & I/O




Abstraction

Hardware Circuits

Logic Gates

Transistors

re be'dragons.
|cal En@eering): ;

(Physics)

Complex devices
Compute & I/0




Logic Gates

Input: Boolean value(s) (high and low voltages for 1 and 0)
Output: Boolean value, the result of a Boolean function

And Or Not
a a
T I e
out=a &b out=a | b out = ~a

A B A & B A | B ~A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0



More I_Og|C Gates Note the circle on the

output.
This means “negate it.”

NAND
a —
out
b _}

out = ~(a & b) out =~(a | b)
A B A NAND B A NOR B
0 0 1 1
0 1 1 0
1 0 1 0
1 1 0 0



Combinational Logic Circuits

 Build up higher level processor functionality from
basic gates.

Acyclic Network of Gates
1 > =
Inputs D —D— Outputs

) >
1

>~

>

Outputs are Boolean functions of inputs.
Outputs continuously respond to changes to inputs.



What does this circuit output?

And Or Not

1> >

L5 o
P

Clicker Ch0|ces

nmmmm

0

0
0
1
1

1
0
1




Build new gates

* Build-up XOR from basic gates (AND, OR, NOT)

A B A " B

0 0 0 Q: When is AMB ==1?
0 1 1

1 0 1

1 1 0

A~B == (~A & B) | (A & ~B)



Which of these is an XOR circuit?

Not

3 ] > >




Which of these is an XOR circuit?

A: B:
: % AT O
- [

?j

—{>o0—

E: None of these is an XOR.

D
by %—EDi



Checking the XOR circuit

A™B == (~A & B) | (A & ~B)

A:0 B:0 A™B: 0 A:1 B:0 AB: 1
A:0 B:1 A™B: 1 A:1 B:1 A™B: 0



Abstracting the XOR circuit

A”B == (~A & B) | (A & ~B)

XOR

R R O o |

R O — O |
oSO Hr B O >

A — out = A”B
0 -




First Goal: Build a model of the CPU

Three main classifications of HW circuits:

1. ALU: implement arithmetic & logic functionality
(ex) adder to add two values together

2. Storage: to store binary values
(ex) Register File: set of CPU registers

3. Control: support/coordinate instruction execution
(ex) fetch the next instruction to execute

HW Circuits
Logic Gates

Transistors




Building an ALU via abstraction

Step 1: zoom in

* Build circuits for each operation the ALU must perform

e Arithmetic

* Integer addition, subtraction, multiplication ...
* Floating point addition, subtraction, multiplication ...

* Logic
* Bitwise operations: AND, OR, ...
» Shifts: left, right, arithmetic

Step 2: zoom out
* Take each component circuit as given.
* Connect the components to memory and control circuits.



Addition Circuits via abstraction

* We want to build an N-bit (e.g. 32-bit) adder.
e Step 1: design a 1-bit adder.

e Step 2: string N 1-bit adders together.



1-bit adder

Inputs: A, B
Outputs: sum, cout

Sum (A+B) Cout

R R O O |
R O L O |
O L Rk O
R O O O



Which of these circuits is a one-bit adder?

A B Sum (A+B) Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
A: B

E: None
of these



What’s missing?

e This circuit is called a half-adder.

A \
* A B Sum (A+B) Cout
) Sum
B ° , 0 0 0 0
0 1 1 0
1 0 1 0
COUt 1 1 0 1

* A one-bit full-adder takes a third input: cin.

0011010
+ 0001111



Which of these is a full-adder?

Hint: use abstraction. Start with two half-adders and
connect them appropriately.

A B Sum Cout

0 0 0 0

0 1 1 0 Full-Adder

. 0 . 0 A B Cin Sum Cout

1 1 0 1
0 0 0 0 0

Half-Adder 0 1 0 1 0

1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1



Which of these is a full-adder?

s— HA

cout

sum

s— HA

cout

cout
cout

HA sur

sum

HA ] O~

sum

cout

HA

sum

HA

cout
sum
sum

D: None
of these.



N-bit adder (ripple-carry adder)

0
1-bit
adder

COUt

1-bit
adder

COUt

1-bit
adder

COUt

Sumo

Sum;,

Sum,

1-bit Sum
adder N-1

COUt



3-bit ripple-carry adder

0
(; By Carry in
adder
Ao
010 (2) Ay
011(3) ! _ sum
+ 1-bit 3-bit °
1 adder — adder Sumy
Bo Sum,
B,
B,
adder

Carry out



Arithmetic Logic Unit (ALU)

* One component that knows how to manipulate bits
in multiple ways
e Addition
e Subtraction
e Multiplication / Division
* Bitwise AND, OR, NOT, etc.

* Built by combining components

e Take advantage of sharing HW when possible
(e.g., subtraction using adder)



Simple 3-bit ALU: Add and bitwise OR

3-bit inputs
A and B:
AO ® |
A, =
A, ® | 3-bit —— Sumg
adder Sum;
Sum,
Bo -*
B, - At any given time, we
B2 ' only want the output
3 Or, from ONE of these!
) Ory
] Orz




Simple 3-bit ALU: Add and bitwise OR

3-bit inputs Extra input: control signal to select Sum vs. OR
A and B:
Ao =
A4 .
A = 3-bit Sum,
? Sum
adder 1
Sum,
B, .
B, .
B, . Circuit that takes
in Sumo_z / Oro_z
D Or, and only outputs
one of them,
based on control
D Or, signal.




Which of these circuits lets us
select between two inputs?

Input 1 Input 1
Control T Control __[>o.:2|:)-
Signal DD Signal DD
InputZI InputZI

Input 1 .

Control __[><> -

Signal D/-:}



Multiplexor: Chooses an input value

Inputs: 2N data inputs, N signal bits

Output: is one of the 2N input values

S 4

V 1 bit 2-way MUX

|
% ) -{— out
a out = (s & a) | (~s &b)

e Control signal s, chooses the input for output

e When s is 1: choose a, when s is 0: choose b



N-Way Multiplexor

Choose one of N inputs, need log, N select bits

DO

D1

D2

D3

sl

4-Way Multiplexor

MUX4

choose

P = O O W

Out

sl
sO

DO

R O = Ol

DO
D1
D2
D3

:

? 1 Slinputto
choose DO

oL

B,

D




Simple 3-bit ALU: Add and bitwise OR

3-bit inputs Extra input: control signal to select Sum vs. OR
A and B:
AO @ |
A4 -
A2 @ | 3-bit — Sumo
adder |~ UM
Sum,
By @
B, @
B, o
) Orq Multiplexer!
) Ory
] Orz




1. Build a subtraction circuit

e Start with a 4-bit addition circuit.
* Create a 4-bit subtraction circuit.

2. Build an ALU that does + and -

 Use one 4-bit adder circuit.

* This adder should be used to perform addition and
subtraction.

* Add control circuitry (a multiplexor) to determine
which operation gets performed.



