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Unsigned vs. Two’s Complement
8-bit example:

11 0 0 0 0 1 1

27426 + 21420 = 128+464+2+1
= 195

—27426 + 21420 = —-128464+2+1
= -61

Why does two’s complement work this way?



The traditional number line

Addition

= —t—
O =l
= ——



Unsigned ints on the number line

00000000 11111111
0 2N -1




Unsigned Integers

e Suppose we had one byte
* Can represent 28 (256) values
* If unsigned (strictly non-negative): 0 — 255

252 =171111100 Car odometer “rolls over”.
253=11111101 35333ﬁ
NNNNNIa

254=11111110
255=11111111
What if we add one more?



Unsigned Overflow

If we add two N-bit unsigned integers, the answer
can’t be more than 2N -1.

11111010
+ 00001100

X00000110

When there should be a carry from the last digit, it is
lost. This is called overflow, and the result of the
addition is incorrect.




In ¢s31, the number line is a circle

255(11111111)

0 \Addition
192 64
128
(10000000)

This means that all arithmetic is modular. With 8 bits,
arithmetic is mod 28; with N bits arithmetic is mod 2N.

255+4=259% 256=3



Suppose we want to support negative
values too (-127 to 127). Where should we
put -1 and -127 on the circle? Why?

1127 (11111111) -1(11111111)
\ 0 \ 0

1 -127

C: Put them somewhere else.



Option B is Two's Complement

* Borrows nice properties from the number line:

_1 1
\ 0 Addition
Addition
o |
-1 1
Only one instance of zero, with
-1 and 1 on either side of it.
" : -127| 127
Addition: moves to the right
128 “Like wrapping
number line

around a circle”



Does two’s complement, solve the
“rolling over” (overflow) problem?

-1

\ 0

A. Yes, it's gone.

B. Nope, it’s still there.

C. It's even worse now.

-127| 127

This is an issue we need to be aware of 128
when adding and subtracting!




Overflow, Revisited

\ unsigned

555 number line
0
Signed
192 Unsigned 64
178 -128
blpssis4elnls | endpoints of

signed
number line



If we add a positive number and a
negative number, will we have
overflow? (Assume they are the same # of bits)

A. Always
B. Sometimes

C. Never

-128




Signed Overflow

* Overflow: IFF the sign bits of operands are the same, but
the sign bit of result is different.
* Not enough bits to store result!

Signed addition (and subtraction):
2+-1=1 2+-2=0 2+-4==2

0010 0010 0010

+1111 +1110 +1100

1 0001 1 0000 1110
No chance of overflow here - signhs -128

of operands are different!



Signed Overflow

* Overflow: IFF the sign bits of operands are the same, but
the sign bit of result is different.
* Not enough bits to store result!

Signed addition (and subtraction):

24-1=1  2+-2=0  2+-4=-2  2+7=-7  -2+-7=7
0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110 1001 1 0111

\ J
|

Overflow here! Operand signs are the
same, and they don’t match output sign!




Overflow Rules

* Sighed:
* The sign bits of operands are the same, but the sign bit
of result is different.

* Can we formalize unsigned overflow?
* Need to include subtraction too, skipped it before.



Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6-7==06+~7+1

input 2 --> possible bit flipper -->

possible +1 input

ADD CIRCUIT

---> result

Let’s call this +1 input: “Carry in”



How many of these unsigned
operations have overflowed?

4 bit unsigned values (range 0 to 15):

carry-in carry-out

Addition (carry-in = 0) \l/ \l/

9 + 11 0 1 0100
9 + 6 + + 0 0 1111
3+ 6 0 0 1001

Subtraction (carry-in = 1)
6 - 3 =
3 - 6 =



How many of these unsigned
operations have overflowed?

4 bit unsigned values (range 0 to 15):

carry-in carry-out

Addition (carry-in = 0) J \?
9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4
9 + 6 = 1001 + 0110 + O = O 1111 = 15
3+ 6 = 0011 + 0110 + O = 0 1001 = 9
Subtraction (carry-in = 1) (~3)
6 - 3 = 0110 + 1100 + 1 =1 0011 = 3
3 - 6 = 0011 + 1010 + 1 =0 1101 = 13

(~6)

What's the pattern?

m o O ™ >
uUO B W NN =



Overtlow Rule Summary

* Signed overflow:

* The sign bits of operands are the same, but the sign bit of
result is different.

e Unsigned: overflow
* The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0 0 0
0 1 1
1 0 1
1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?



Suppose we have a signed 8-bit value,
00010110 (22), and we want to add it
to a signed 4-bit value, 1011 (-5). How
should we represent the four-bit value?

1101 (don’t change it)

00001101 (pad the beginning with 0’s)
11111011 (pad the beginning with 1’s)
Represent it some other way.

o 0w »



Sign Extension

* When combining signed values of different sizes, expand

the smaller to equivalent larger size:

char y=2, x=-13;
short z = 10;

z = Z T Vy;

0000000000001010
+ 00000010
0000000000000010

Z = zZ + X3

0000000000000101
+ 11110011
1111111111110011

Fill in high-order bits with sign-bit value to get same
numeric value in larger number of bytes.



Let’s verity that this works

4-bit signed value, sign extend to 8-bits, is it the
same value?

0111 ----> 0000 0111 obviously still 7
1010 —----> 1111 1010 isthisstill-6?

-128+64+32 +16+ 8+0+2+0= -6 vyes!



Operations on Bits

* For these, doesn’t matter how the bits are
interpreted (signed vs. unsigned)

* Bit-wise operators (AND, OR, NOT, XOR)

* Bit shifting



Bit-wise Operators

* bit operands, bit result (interpret as you please)

& (AND) | (OR) ~(NOT) A (XOR)

A B A & B A | B ~A A~ B

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

01010101 01101010 10101010  ~10101111
| 00100001 & 10111011  ~ 01101001 01010000

01110101 00101010 11000011



More Operations on Bits

e Bit-shift operators: << left shift, >> right shift

01010101 << 2 1is 01010100
2 high-order bits shifted out
2 low-order bits filled with O
01101010 << 4 1is 10100000
01010101 >> 2 1is 00010101
01101010 >> 4 is 00000110

10101100 >> 2 1is 00101011 (logical shift)
or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type:
signed: arithmetic, unsigned: logical



Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent | don’t expect you
23 bits for precision to memorize this

value = (_1)sign * 1 fraction * 2(exponent-127)
let's just plug in some values and try it out

O0x40ac49ba: 0 10000001 01011000100100110111010
sign = 0 exp = 129 fraction = 2902458

= 1%1.2902458*22 = 5.16098

Think of scientific notation: 1.933e-4 =1.933 * 104



Character Representation

* Represented as one-byte integers using ASCII.
* ASCII maps the range 0-127 to letters, punctuation, etc.

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr
00 000 NULL 3220 040 &#032; Space | 64 40 100 &#064;, @ 96 60 140 &#096;
11 001 StartofHeader 3321 041 &#033; ! 6541 101 &#065; A 97 61 141 &#097;, a
22 002 StartofText 34 22 042 &#034;, " 66 42 102 &#066; B 98 62 142 &#098; b
33 003 EndofText 35 23 043 &#035 # 67 43 103 &#067; C 99 63 143 &#099; c
44 004 End of Transmission 36 24 044 &#036;, $ 68 44 104 &#068; D 100 64 144 &#100; d
55 005 Enquiry 37 25 045 &#037, % 69 45 105 &#069; E 101 65 145 &#101; e
66 006 Acknowledgment 38 26 046 &#038, & 70 46 106 &#070; F 102 66 146 &#102; f
77 007 Bell 39 27 047 &#039;, ' 71 47 107 &#071;, G 103 67 147 &#103; g
88 010 Backspace 40 28 050 &#040; ( 72 48 110 &#072; H 104 68 150 &#104; h
99 011 Horizontal Tab 41 29 051 &#041; ) 7349 111 &#073; 1 105 69 151 &#105; i

10 A 012 Linefeed 42 2A 052 &#042; * 74 4A 112 &#074; ) 106 6A 152 &#106; |
11 B 013 Vertical Tab 43 2B 053 &#043; + 75 4B 113 &#075; K 107 6B 153 &#107; k
12C 014 Form feed 44 2C 054 &#044; , 76 4C 114 &#076; L 108 6C 154 &#108; |
13 D 015 Carriage return 45 2D 055 &#045; - 77 4D 115 &#077; M | 109 6D 155 &#109; m
14 E 016 Shift Out 46 2E 056 &#046; . 78 4E 116 &#078; N 110 6 156 &#110; n
15F 017 ShiftIn 47 2F 057 &#047; / 79 4F 117 &#079; O 111 6F 157 &#111; o
16 10 020 Data Link Escape 48 30 060 &#048; 0 80 50 120 &#080; P 11270 160 &#112; p
17 11 021 Device Control 1 49 31 061 &#049;, 1 8151 121 &#081;, Q 113 71 161 &#113; q
18 12 022 Device Control 2 50 32 062 &#050; 2 8252 122 &#082; R 114 72 162 &#114; r
19 13 023 Device Control 3 51 33 063 &#051; 3 83 53 123 &#083; S 11573 163 &#115; s
20 14 024 Device Control 4 52 34 064 &#052; 4 84 54 124 &#084; T 116 74 164 &#116; t
21 15 025 Negative Ack. 5335 065 &#053; 5 85 55 125 &#085; U 117 75 165 &#117, u
2216 026 Synchronous idle 54 36 066 &#054; 6 86 56 126 &#086;, V 118 76 166 &#118; v
23 17 027 End of Trans. Block 5537 067 &#055; 7 87 57 127 &#087; W | 119 77 167 &#119;, w
24 18 030 Cancel 56 38 070 &#056; 8 88 58 130 &#088; X 120 78 170 &#120; x
2519 031 End of Medium 57 39 071 &#057;, 9 89 59 131 &#089; Y 12179 171 &#121; y
26 1A 032 Substitute 58 3A 072 &#058; 90 5A 132 &#090; Z 122 7A 172 &#122; z
27 1B 033 Escape 59 3B 073 &#059; ; 91 5B 133 &#091; | 123 7B 173 &#123; {
28 1C 034 File Separator 60 3C 074 &#060; < 92 5C 134 &#092; \ 124 7C 174 &#124; |
29 1D 035 Group Separator 61 3D 075 &#061, = 93 5D 135 &#093; ] 125 7D 175 &#125; }
30 1E 036 Record Separator 62 3E 076 &#062;, > 94 5B 136 &#094; ~ 126 7E 176 &#126;, ~
31 1F 037 Unit Separator 63 3F 077 &#063; ? 95 5F 137 &#095; _ 127 7F 177 &#127; Del

asciicharstable.com



Characters and strings in C

char ¢ = ‘J’;
char s[6] = “hello”;
s[0] = c;

printf (“%s\n”, s);
Will print: Jello
* Character literals are surrounded by single quotes.

* String literals are surrounded by double quotes.
e Strings are stored as arrays of characters.



Discussion question: how can we
tell where a string ends?

A. Mark the end of the string with a special character.

Associate a length value with the string, and use that to
store its current length.

A string is always the full length of the array it’s contained
within (e.g., char name[ 20 ] must be of length 20).

All of these could work (which is best?).

Some other mechanism (such as?).




What will this snippet print?

char ¢ = ‘J’;

char s[6] = “hello”;
s[5] = ¢y

printf (“%s\n”, s);

. Jello

. hellJd

. hellod

. Something else, that we can determine.
Something else, but we can’t tell what.




