More about Binary

9/6/2016

Unsigned vs. Two's Complement

 8-bit example:$$
\begin{array}{rlrl}
1 & 00001 & 1 \\
2^{7}+2^{6} & 0 & \\
& & \\
2^{1}+2^{0} & =128+64+2+1 \\
& =195 \\
-2^{7}+2^{6}+2^{1}+2^{0} & =-128+64+2+1 \\
& =-61
\end{array}
$$

Why does two's complement work this way?

The traditional number line

Addition

Unsigned ints on the number line

Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
253 = 11111101
$254=11111110$
$255=11111111$
What if we add one more?

Car odometer "rolls over".
gyyyyyy

Unsigned Overflow

If we add two N -bit unsigned integers, the answer can't be more than $2^{\mathrm{N}}-1$.

```
    11111010
+ 00001100
    $00000110
```

When there should be a carry from the last digit, it is lost. This is called overflow, and the result of the addition is incorrect.

In cs31, the number line is a circle

This means that all arithmetic is modular. With 8 bits, arithmetic is $\bmod 2^{8}$; with N bits arithmetic is $\bmod 2^{\mathrm{N}}$.
$255+4=259 \% 256=3$

Suppose we want to support negative

 values too (-127 to 127). Where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

Option B is Two's Complement

- Borrows nice properties from the number line:

Addition

Only one instance of zero, with
-1 and 1 on either side of it.

Addition: moves to the right

Does two's complement, solve the "rolling over" (overflow) problem?
A. Yes, it's gone.
B. Nope, it's still there.
C. It's even worse now.

This is an issue we need to be aware of when adding and subtracting!

Overflow, Revisited

If we add a positive number and a negative number, will we have overflow? (Assume they are the same \# of bits)
A. Always
B. Sometimes
C. Never

Signed Overflow

- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!

Signed addition (and subtraction):

$2+-1=1$	$2+-2=0$	$2+-4=-2$
0010	0010	0010
+1111	$\frac{+1110}{10001}$	1000

Signed Overflow

- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
- Not enough bits to store result!

Signed addition (and subtraction):

$2+-1=1$	$2+-2=0$	$2+-4=-2$	$2+7=-7$	$-2+-7=7$
0010	0010	0010	0010	1110
$\frac{+1111}{0001}$	$\frac{+1110}{0000}$	$\frac{+1100}{1110}$	$\frac{+0111}{1001}$	$\underbrace{\frac{+1001}{0111}}$

Overflow here! Operand signs are the same, and they don't match output sign!

Overflow Rules

- Signed:
- The sign bits of operands are the same, but the sign bit of result is different.
- Can we formalize unsigned overflow?
- Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:
Can use the same circuit for add and subtract:
$6-7==6+\sim 7+1$

Let's call this +1 input: "Carry in"

How many of these unsigned operations have overflowed?

4 bit unsigned values (range 0 to 15):

Addition (carry-in $=0$)

$$
9+11=1001+1011+0=10100
$$

$$
9+6=1001+0110+0=01111
$$

$$
3+6=0011+0110+0=01001
$$

Subtraction (carry-in = 1)

$$
\begin{aligned}
& 6-3=0110+1100+1=10011 \\
& 3-6=0011+1010+1=01101
\end{aligned}
$$

A. 1
B. 2
C. 3
D. 4
E. 5

How many of these unsigned operations have overflowed?

4 bit unsigned values (range 0 to 15):

Addition (carry-in $=0$)

$$
\begin{aligned}
& 9+11=1001+1011+0=10100=4 \\
& 9+6=1001+0110+0=01111=15 \\
& 3+6=0011+0110+0=01001=9
\end{aligned}
$$

Subtraction (carry-in =1)

$$
\begin{aligned}
& 6-3= \\
& 3-6=
\end{aligned}
$$

A. 1
B. 2
C. 3
D. 4
E. 5

Overflow Rule Summary

- Signed overflow:
- The sign bits of operands are the same, but the sign bit of result is different.
- Unsigned: overflow
- The carry-in bit is different from the carry-out.

$C_{\text {in }}$	C $_{\text {out }}$	$C_{\text {in }}$ XOR
0	0	0
0	1	1
1	0	1
1	1	0

Suppose we have a signed 8-bit value, 00010110 (22), and we want to add it to a signed 4-bit value, 1011 (-5). How should we represent the four-bit value?
A. 1101 (don't change it)
B. 00001101 (pad the beginning with 0 's)
C. 11111011 (pad the beginning with 1's)
D. Represent it some other way.

Sign Extension

- When combining signed values of different sizes, expand the smaller to equivalent larger size:
char $y=2, x=-13$;
short z = 10;

$$
z=z+y ;
$$

$$
z=z+x ;
$$

0000000000001010

+ 00000010
0000000000000010

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.

Let's verify that this works

4-bit signed value, sign extend to 8 -bits, is it the same value?

0111 ----> 00000111 obviously still 7
1010 ----> 11111010 is this still -6?
$-128+64+32+16+8+0+2+0=-6$ yes!

Operations on Bits

- For these, doesn't matter how the bits are interpreted (signed vs. unsigned)
- Bit-wise operators (AND, OR, NOT, XOR)
- Bit shifting

Bit-wise Operators

- bit operands, bit result (interpret as you please)
\& (AND) $\quad \mid(\mathrm{OR}) \quad \sim(\mathrm{NOT}) \quad \wedge(\mathrm{XOR})$

A	B	A	$\&$	B	A	\mid	B	$\sim A$
0	0	0	0	A	B			
0	1	0	1	1	0			
1	0	0	1	0	1			
1	1	1	1	0	0			

01010101

$\frac{1010001}{01110101}$$\frac{\& 10111011}{00101010} \quad$	10101010
11000011	$\quad \frac{\sim 10101111}{01010000}$

More Operations on Bits

- Bit-shift operators: << left shift, >> right shift

```
01010101 << 2 is 01010100
    2 high-order bits shifted out
    2 ~ l o w - o r d e r ~ b i t s ~ f i l l e d ~ w i t h ~ 0 ~
01101010 << 4 is 10100000
01010101 >> 2 is 00010101
01101010 >> 4 is 00000110
10101100 >> 2 is 00101011 (logical shift)
or 11101011 (arithmetic shift)
```

Arithmetic right shift: fills high-order bits w/sign bit C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision

I don't expect you
to memorize this

$$
\text { value }=(-1)^{\text {sign }} * 1 . \text { fraction } * 2^{\text {(exponent-127) }}
$$

let's just plug in some values and try it out

$$
\begin{aligned}
0 \times 40 \mathrm{ac} 49 \mathrm{ba}: & 010000001 \quad 01011000100100110111010 \\
\text { sign }= & 0 \exp =129 \quad \text { fraction }=2902458 \\
& =1 * 1.2902458 * 2^{2}=5.16098
\end{aligned}
$$

Think of scientific notation: 1.933e-4 = $1.933 * 10^{-4}$

Character Representation

- Represented as one-byte integers using ASCII.
 - ASCII maps the range 0-127 to letters, punctuation, etc.

Dec Hex	Oct	Chr	Dec Hex	Oct	HTML	Chr	Dec Hex	Oct HTML	Chr	Dec Hex	Oct HTML	Chr
00	000	NULL	3220	040	\&\#032;	Space	6440	100 \&\#064;	@	9660	140 \&\#096;	
11	001	Start of Header	3321	041	\&\#033;	!	6541	101 \&\#065;	A	9761	141 \&\#097;	a
22	002	Start of Text	3422	042	\&\#034;	"	6642	102 \&\#066;	B	9862	142 \&\#098;	b
33	003	End of Text	3523	043	\&\#035;	\#	6743	103 \&\#067;	C	9963	143 \&\#099;	c
44	004	End of Transmission	3624	044	\&\#036;	\$	6844	104 \&\#068;	D	10064	144 \&\#100;	d
55	005	Enquiry	3725	045	\&\#037;	\%	6945	105 \&\#069;	E	10165	145 \&\#101;	e
66	006	Acknowledgment	3826	046	\&\#038;	\&	7046	106 \&\#070;	F	10266	146 \&\#102;	f
77	007	Bell	3927	047	\&\#039;		7147	107 \&\#071;	G	10367	147 \&\#103;	g
88	010	Backspace	4028	050	\&\#040;	(7248	110 \&\#072;	H	10468	150 \&\#104;	h
99	011	Horizontal Tab	4129	051	\&\#041;)	7349	111 \&\#073;	I	10569	151 \&\#105;	i
10 A	012	Line feed	42 2A	052	\&\#042;	*	74 4A	112 \&\#074;	J	106 6A	152 \&\#106;	j
11 B	013	Vertical Tab	43 2B	053	\&\#043;	+	75 4B	113 \&\#075;	K	107 6B	153 \&\#107;	k
12 C	014	Form feed	44 2C	054	\&\#044;	,	76 4C	114 \&\#076;	L	108 6C	154 \&\#108;	1
13 D	015	Carriage return	45 2D	055	\&\#045;	-	77 4D	115 \&\#077;	M	109 6D	155 \&\#109;	m
14 E	016	Shift Out	46 2E	056	\&\#046;		78 4E	116 \&\#078;	N	110 6E	156 \&\#110;	n
15 F	017	Shift In	47 2F	057	\&\#047;	/	79 4F	117 \&\#079;	O	111 6F	157 \&\#111;	0
1610	020	Data Link Escape	4830	060	\&\#048;	0	8050	120 \&\#080;	P	11270	160 \&\#112;	P
1711	021	Device Control 1	4931	061	\&\#049;	1	8151	121 \&\#081;	Q	11371	161 \&\#113;	q
1812	022	Device Control 2	5032	062	\&\#050;	2	8252	122 \&\#082;	R	11472	162 \&\#114;	r
1913	023	Device Control 3	5133	063	\&\#051;	3	8353	123 \&\#083;	S	11573	163 \&\#115;	S
2014	024	Device Control 4	5234	064	\&\#052;	4	8454	124 \&\#084;	T	11674	164 \&\#116;	t
2115	025	Negative Ack.	5335	065	\&\#053;	5	8555	125 \&\#085;	U	11775	165 \&\#117;	u
2216	026	Synchronous idle	5436	066	\&\#054;	6	8656	126 \&\#086;	V	11876	166 \&\#118;	V
2317	027	End of Trans. Block	5537	067	\&\#055;	7	8757	127 \&\#087;	W	11977	167 \&\#119;	W
2418	030	Cancel	5638	070	\&\#056;	8	8858	130 \&\#088;	X	12078	170 \&\#120;	x
2519	031	End of Medium	5739	071	\&\#057;	9	8959	131 \&\#089;	Y	12179	171 \&\#121;	y
26 1A	032	Substitute	58 3A	072	\&\#058;	:	90 5A	132 \&\#090;	Z	122 7A	172 \&\#122;	z
27 1B	033	Escape	59 3B	073	\&\#059;	;	91 5B	133 \&\#091;	[123 7B	173 \&\#123;	\{
28 1C	034	File Separator	60 3C	074	\&\#060;	<	92 5C	134 \&\#092;	1	124 7C	174 \&\#124;	
29 1D	035	Group Separator	61 3D	075	\&\#061;	$=$	93 5D	135 \&\#093;]	125 7D	175 \&\#125;	\}
301 E	036	Record Separator	62 3E	076	\&\#062;	>	94 5E	136 \&\#094;	\wedge	126 7E	176 \&\#126;	~
31 1F	037	Unit Separator	63 3F	077	\&\#063;	?	95 5F	137 \&\#095;	_	127 7F	177 \&\#127;	Del

Characters and strings in C

char $c=$ 'J';
char s[6] = "hello";
s[0] = c;
printf("\%s\n", s);

Will print: Jello

- Character literals are surrounded by single quotes.
- String literals are surrounded by double quotes.
- Strings are stored as arrays of characters.

Discussion question: how can we tell where a string ends?

A. Mark the end of the string with a special character.
B. Associate a length value with the string, and use that to store its current length.
C. A string is always the full length of the array it's contained within (e.g., char name [20] must be of length 20).
D. All of these could work (which is best?).
E. Some other mechanism (such as?).

What will this snippet print?

char $\mathrm{c}=\mathrm{J}$ ';
char s[6] = "hello";
s[5] = c;
printf("\%s\n", s);
A. Jello
B. hell J
C. helloJ
D. Something else, that we can determine.
E. Something else, but we can't tell what.

