
More	about	Binary
9/6/2016

Unsigned	vs.	Two’s	Complement

8-bit	example:

1 1 0 0 0 0 1 1

27+26 + 21+20 = 128+64+2+1
= 195

-27+26 + 21+20 = -128+64+2+1
= -61

Why	does	two’s	complement	work	this	way?

The	traditional	number	line

0 1	……	-1

Addition

Unsigned	ints on	the	number	line

00000000

0 2N - 1
11111111

Unsigned	Integers

• Suppose	we	had	one	byte
• Can	represent	28 (256)	values
• If	unsigned	(strictly	non-negative):	0	– 255

252	=	11111100
253	=	11111101
254	=	11111110
255	=	11111111
What	if	we	add	one	more?

Car	odometer	“rolls	over”.

Unsigned	Overflow

If	we	add	two	N-bit	unsigned	integers,	the	answer	
can’t	be	more	than	2N – 1.

11111010
+ 00001100
100000110

When	there	should	be	a	carry	from	the	last	digit,	it	is	
lost.	This	is	called	overflow,	and	the	result	of	the	
addition	is	incorrect.

In	cs31,	the	number	line	is	a	circle

This	means	that	all	arithmetic	is	modular.	With	8	bits,	
arithmetic	is	mod	28;	with	N	bits	arithmetic	is	mod	2N.

255	+	4	=	259	%	256	=	3

0

128	
(10000000)

64192

255	(11111111)
Addition

Suppose	we	want	to	support	negative	
values	too	(-127	to	127).		Where	should	we	
put	-1	and	-127	on	the	circle?		Why?

0

-1

-127	(11111111)

A

0

-127

-1	(11111111)

B

C:	Put	them	somewhere	else.

Option	B	is	Two’s	Complement

• Borrows	nice	properties	from	the	number	line:

0

-1 1

Only	one	instance	of	zero, with
-1	and	1	on	either	side	of	it.

Addition

Addition:		moves	to	the	right	
“Like	wrapping
number	line	
around	a	circle”

0

-127

-1 1

127

-128

Addition

Does	two’s	complement,	solve	the	
“rolling	over”	(overflow)	problem?

A. Yes,	it’s	gone.

B. Nope,	it’s	still	there.

C. It’s	even	worse	now.

This	is	an	issue	we	need	to	be	aware	of	
when	adding	and	subtracting!

0

-127

-1 1

127

-128

Overflow,	Revisited

0

128

64192

255

Unsigned

Danger	Zone endpoints	of
unsigned	
number	line

0

-127

-1

Signed

1

127

-128

Danger	Zone endpoints	of
signed	
number	line

If	we	add	a	positive	number	and	a	
negative	number,	will	we	have	
overflow?		(Assume	they	are	the	same	#	of	bits)

A. Always

B. Sometimes

C. Never

0

-127

-1

Signed

1

127

-128

Danger	Zone

Signed	Overflow

• Overflow:	IFF	the	sign	bits	of	operands	are	the	same,	but	
the	sign	bit	of	result	is	different.
• Not	enough	bits	to	store	result!

Signed	addition	(and	subtraction):
2+-1=1 2+-2=0 2+-4=-2 2+7=-7 -2+-

7=7

0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110 1001 1 0111

0

-127

-1

Signed

1

127

-128No	chance	of	overflow	here	- signs	
of	operands	are	different!

Signed	Overflow

• Overflow:	IFF	the	sign	bits	of	operands	are	the	same,	but	
the	sign	bit	of	result	is	different.
• Not	enough	bits	to	store	result!

Signed	addition	(and	subtraction):
2+-1=1 2+-2=0 2+-4=-2 2+7=-7 -2+-7=7

0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110 1001 1 0111

Overflow	here!		Operand	signs	are	the	
same,	and	they	don’t	match	output	sign!

Overflow	Rules

• Signed:
• The	sign	bits	of	operands	are	the	same,	but	the	sign	bit	
of	result	is	different.

• Can	we	formalize	unsigned	overflow?
• Need	to	include	subtraction	too,	skipped	it	before.

Recall	Subtraction	Hardware
Negate	and	add	1	to	second	operand:
Can	use	the	same	circuit	for	add	and	subtract:
6	- 7	==		6	+	~7	+	1

input	1	------------------------------->
input	2	-->	possible	bit	flipper	-->	ADD	CIRCUIT	--->	result

possible	+1	input	-------->

Let’s	call	this	+1	input:	“Carry	in”

How	many	of	these	unsigned
operations	have	overflowed?
4	bit	unsigned	values	(range	0	to	15):

carry-in carry-out

Addition	(carry-in	=	0)

9 + 11 = 1001 + 1011 + 0 = 1 0100

9 + 6 = 1001 + 0110 + 0 = 0 1111
3 + 6 = 0011 + 0110 + 0 = 0 1001

Subtraction	(carry-in	=	1)

6 - 3 = 0110 + 1100 + 1 = 1 0011
3 - 6 = 0011 + 1010 + 1 = 0 1101

A. 1
B. 2
C. 3
D. 4
E. 5

(~3)

(~6)

How	many	of	these	unsigned
operations	have	overflowed?
4	bit	unsigned	values	(range	0	to	15):

carry-in carry-out

Addition	(carry-in	=	0)

9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4

9 + 6 = 1001 + 0110 + 0 = 0 1111 = 15
3 + 6 = 0011 + 0110 + 0 = 0 1001 = 9

Subtraction	(carry-in	=	1)

6 - 3 = 0110 + 1100 + 1 = 1 0011 = 3
3 - 6 = 0011 + 1010 + 1 = 0 1101 = 13

A. 1
B. 2
C. 3
D. 4
E. 5

(~3)

(~6)

What’s	the	pattern?

Overflow	Rule	Summary

• Signed	overflow:
• The	sign	bits	of	operands	are	the	same,	but	the	sign	bit	of	
result	is	different.

• Unsigned:	overflow
• The	carry-in	bit	is	different	from	the	carry-out.

Cin Cout Cin XOR Cout
0 0 0
0 1 1
1 0 1
1 1 0

So	far,	all	arithmetic	on	values	that	were	the	same	size.		What	if	they’re	different?

Suppose	we	have	a	signed	8-bit	value,	
00010110	(22),	and	we	want	to	add	it	
to	a	signed	4-bit	value,	1011	(-5).		How	
should	we	represent	the	four-bit	value?

A. 1101	(don’t	change	it)
B. 00001101	(pad	the	beginning	with	0’s)
C. 11111011	(pad	the	beginning	with	1’s)
D. Represent	it	some	other	way.

Sign	Extension
• When	combining	signed	values	of	different	sizes,	expand	
the	smaller	to	equivalent	larger	size:

char y=2, x=-13;
short z = 10;

z = z + y; z = z + x;

0000000000001010 0000000000000101
+ 00000010 + 11110011
0000000000000010 1111111111110011

Fill	in	high-order	bits	with	sign-bit value	to	get	same	
numeric	value	in	larger	number	of	bytes.

Let’s	verify	that	this	works

4-bit	signed	value,	sign	extend	to	8-bits,	is	it	the	
same	value?

0111 ----> 0000 0111 obviously	still	7
1010 ----> 1111 1010 is	this	still	-6?

-128	+	64	+	32		+	16	+		8	+	0	+	2	+	0	=		-6				yes!

Operations	on	Bits

• For	these,	doesn’t	matter	how	the	bits	are	
interpreted	(signed	vs.	unsigned)

• Bit-wise	operators	(AND,	OR,	NOT,	XOR)

• Bit	shifting

Bit-wise	Operators
• bit	operands,	bit	result	(interpret	as	you	please)

&	(AND)										|	(OR)											~(NOT)												^(XOR)

A B A & B A | B ~A A ^ B
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 0 0

01010101 01101010 10101010 ~10101111
| 00100001 & 10111011 ^ 01101001 01010000
01110101 00101010 11000011

More	Operations	on	Bits
• Bit-shift	operators:			<<	left	shift,		>>	right	shift

01010101 << 2 is 01010100
2 high-order bits shifted out
2 low-order bits filled with 0

01101010 << 4 is 10100000
01010101 >> 2 is 00010101
01101010 >> 4 is 00000110

10101100 >> 2 is 00101011 (logical shift)
or 11101011 (arithmetic shift)

Arithmetic	right	shift:	 fills	high-order	bits	w/sign	bit
C	automatically	decides	which	to	use	based	on	type:

signed:	arithmetic,	unsigned:	logical

Floating	Point	Representation
1		bit	for	sign														sign	|			exponent	|		fraction	|
8		bits	for	exponent
23	bits	for	precision

value	=	(-1)sign * 1.fraction	*	2(exponent-127)

let's	just	plug	in	some	values	and	try	it	out

0x40ac49ba: 0 10000001 01011000100100110111010
sign = 0 exp = 129 fraction = 2902458

= 1*1.2902458*22 = 5.16098

Think	of	scientific	notation:		1.933e-4	=	1.933	*	10-4

I	don’t	expect	you	
to	memorize	this

Character	Representation
• Represented	as	one-byte	integers	using	ASCII.
• ASCII	maps	the	range	0-127	to	letters,	punctuation,	etc.

Characters	and	strings	in	C

char c = ‘J’;
char s[6] = “hello”;
s[0] = c;
printf(“%s\n”, s);

Will	print:	Jello

• Character	literals	are	surrounded	by	single	quotes.
• String	literals	are	surrounded	by	double	quotes.
• Strings	are	stored	as	arrays	of	characters.

Discussion	question:	how	can	we	
tell	where	a	string	ends?
A. Mark	the	end	of	the	string	with	a	special	character.

B. Associate	a	length	value	with	the	string,	and	use	that	to	
store	its	current	length.

C. A	string	is	always	the	full	length	of	the	array	it’s	contained	
within	(e.g.,	char name[20]must	be	of	length	20).

D. All	of	these	could	work	(which	is	best?).

E. Some	other	mechanism	(such	as?).

What	will	this	snippet	print?

char c = ‘J’;
char s[6] = “hello”;
s[5] = c;
printf(“%s\n”, s);

A. Jello

B. hellJ

C. helloJ

D. Something	else,	that	we	can	determine.
E. Something	else,	but	we	can’t	tell	what.

