More about Binary

9/6/2016

Unsigned vs. Two's Complement

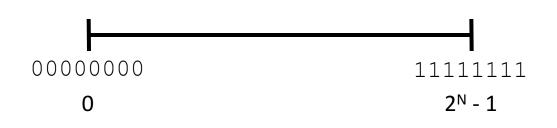
8-bit example:

 $1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1$ $2^{7}+2^{6} + 2^{1}+2^{0} = 128+64+2+1$ = 195 $-2^{7}+2^{6} + 2^{1}+2^{0} = -128+64+2+1$ = -61

Why does two's complement work this way?

The traditional number line

Unsigned ints on the number line



Unsigned Integers

- Suppose we had one byte
 - Can represent 2⁸ (256) values
 - If unsigned (strictly non-negative): 0 255
- **252 =** 11111100
- **253 =** 11111101
- **254 =** 1111110
- **255 =** 11111111

What if we add one more?

Car odometer "rolls over".

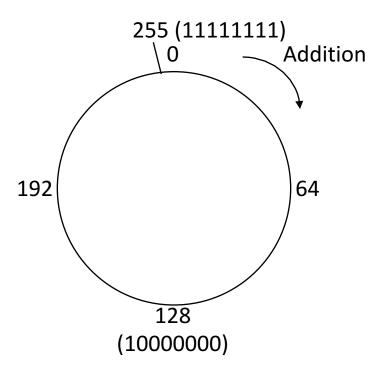
Unsigned Overflow

If we add two N-bit unsigned integers, the answer can't be more than $2^{N} - 1$.

11111010 + 00001100 X00000110

When there should be a carry from the last digit, it is lost. This is called **overflow**, and the result of the addition is incorrect.

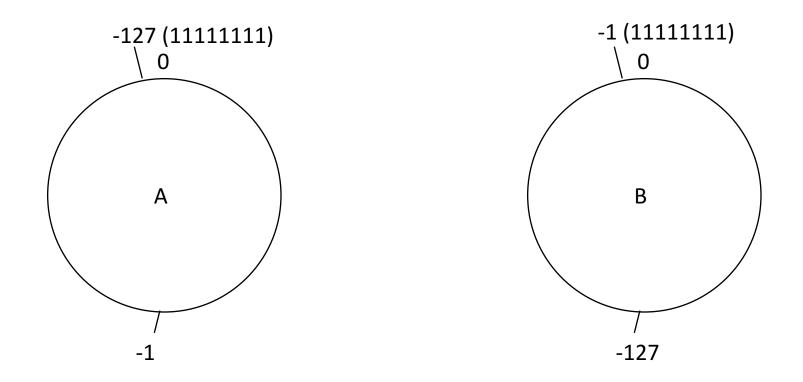
In cs31, the number line is a circle



This means that all arithmetic is modular. With 8 bits, arithmetic is mod 2^8 ; with N bits arithmetic is mod 2^N .

255 + 4 = 259 % 256 = 3

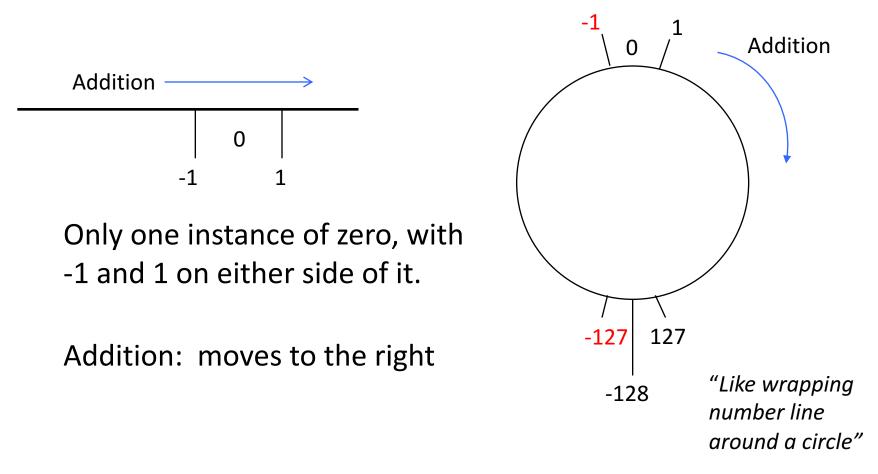
Suppose we want to support negative values too (-127 to 127). Where should we put -1 and -127 on the circle? Why?



C: Put them somewhere else.

Option B is Two's Complement

• Borrows nice properties from the number line:

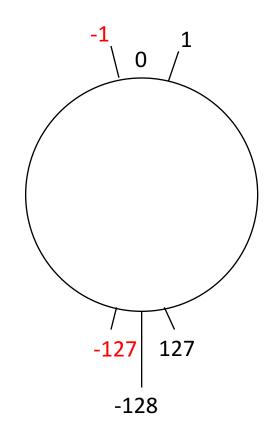


Does two's complement, solve the "rolling over" (overflow) problem?

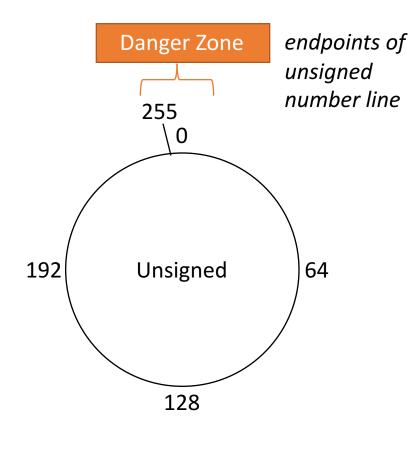
A. Yes, it's gone.

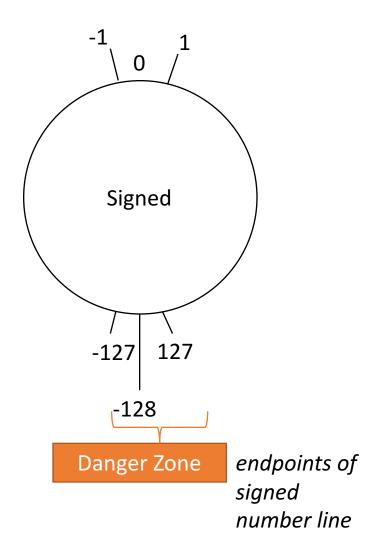
- B. Nope, it's still there.
- C. It's even worse now.

This is an issue we need to be aware of when adding and subtracting!



Overflow, Revisited

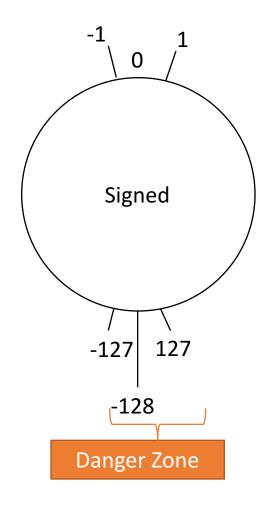




If we add a positive number and a negative number, will we have overflow? (Assume they are the same # of bits)

A. Always

- **B.** Sometimes
- C. Never



Signed Overflow

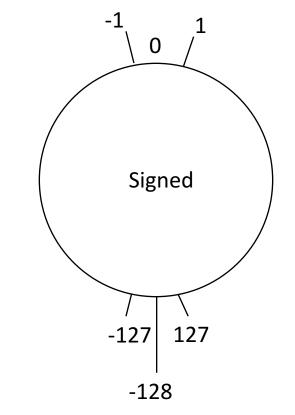
- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
 - Not enough bits to store result!

<u>Signed addition (and subtraction)</u>:

2+-1=1 2+-2=0 2+-4=-2

0 010	0 010	0010
+1111	+1110	+1100
1 0001	1 0000	1110

No chance of overflow here - signs of operands are different!



Signed Overflow

- Overflow: IFF the sign bits of operands are the same, but the sign bit of result is different.
 - Not enough bits to store result!

<u>Signed addition (and subtraction)</u>:

2+-1=1	2+-2=0	2 + - 4 = -2	2+7=-7	-2+-7=7
0010	0010	0010	0 010	1 110
+1111	+1110	+1100	+0111	+1001
1 0001	1 0000	1110	1 001	1 0 111

Overflow here! Operand signs are the same, and they don't match output sign!

Overflow Rules

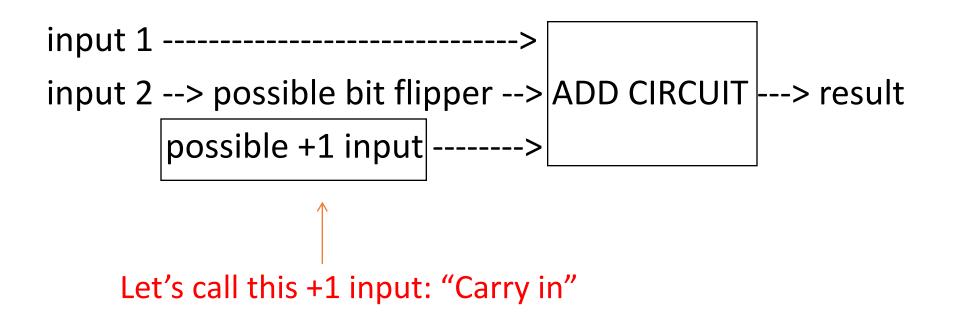
- Signed:
 - The sign bits of operands are the same, but the sign bit of result is different.
- Can we formalize unsigned overflow?
 - Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6 - 7 == 6 + ~7 + 1



How many of these <u>unsigned</u> operations have overflowed?

4 bit unsigned values (range 0 to 15):

				carry-out							
Additio	n (car	ry-in = 0)					\downarrow		\downarrow	
9	+	11	=	1001 -	+	1011	+	0	=	1	0100
9	+	6	=	1001 -	╀	0110	+	0	=	0	1111
3	+	6	=	0011 -	╀	0110	+	0	=	0	1001
Subtrac	tion (carry-in	= 1)			(~3)					
6	_	3	=	0110 -	+	1100	+	1	=	1	0011
3	_	6	=	0011 -	+	1010	+	1	=	0	1101
						(~6)					
A.	1										

B. 2

C. 3

D. 4

E. 5

How many of these <u>unsigned</u> operations have overflowed?

4 bit unsigned values (range 0 to 15):

								carry-out						
Addi	tior	n (car	ry-in = 0)					\downarrow		\downarrow			
	9	+	11	=	1001	+	1011	+	0	=	1	0100	=	4
	9	+	6	=	1001	+	0110	+	0	=	0	1111	=	15
	3	+	6	=	0011	+	0110	+	0	=	0	1001	=	9
Subt	ract	tion (carry-in	= 1)			(~3)							
	6	_	3	=	0110	+	1100	+	1	=	1	0011	=	3
	3	_	6	=	0011	+	1010	+	1	=	0	1101	=	13
							(~6)							
Α.		1												
Β.		2			NA / I		,				~			
C.		3			Wh	ať	's the	e p	a	ttei	'n:	,		
D.		4												
Ε.		5												

Overflow Rule Summary

- Signed overflow:
 - The sign bits of operands are the same, but the sign bit of result is different.
- Unsigned: overflow
 - The carry-in bit is different from the carry-out.

C_{in}	C _{out}	C_{in} XOR C_{out}
0	0	0
0	1	1
1	0	1
1	1	0

So far, all arithmetic on values that were the same size. What if they're different?

Suppose we have a signed 8-bit value, 00010110 (22), and we want to add it to a signed 4-bit value, 1011 (-5). How should we represent the four-bit value?

- A. 1101 (don't change it)
- B. 00001101 (pad the beginning with 0's)
- C. 11111011 (pad the beginning with 1's)
- D. Represent it some other way.

Sign Extension

• When combining signed values of different sizes, expand the smaller to equivalent larger size:

Fill in high-order bits with sign-bit value to get same numeric value in larger number of bytes.

Let's verify that this works

4-bit signed value, sign extend to 8-bits, is it the same value?

0111 ----> 0000 0111 obviously still 7 1010 ----> 1111 1010 is this still -6?

-128 + 64 + 32 + 16 + 8 + 0 + 2 + 0 = -6 yes!

Operations on Bits

- For these, doesn't matter how the bits are interpreted (signed vs. unsigned)
- Bit-wise operators (AND, OR, NOT, XOR)
- Bit shifting

Bit-wise Operators

bit operands, bit result (interpret as you please)
& (AND) | (OR) ~(NOT) ^(XOR)

A	В	A & B	А	E	8 ~A	A ^ B
0	0	0		0	1	0
0	1	0		1	1	1
1	0	0		1	0	1
1	1	1		1	0	0
01010	0101	0110101	0		10101010	~10101111
00100	001	§ 1011101	1	^	01101001	01010000
0111(0101	0010101	0		11000011	

More Operations on Bits

• Bit-shift operators: << left shift, >> right shift

Arithmetic right shift: fills high-order bits w/sign bit C automatically decides which to use based on type: signed: arithmetic, unsigned: logical

Floating Point Representation

- 1 bit for sign sign exponent | fraction |
- 8 bits for exponent
- 23 bits for precision

I don't expect you to memorize this

```
value = (-1)<sup>sign</sup> * 1.fraction * 2<sup>(exponent-127)</sup>
```

let's just plug in some values and try it out

```
0x40ac49ba: 0 10000001 01011000100100110111010
sign = 0 exp = 129 fraction = 2902458
```

```
= 1 \times 1.2902458 \times 2^2 = 5.16098
```

Think of scientific notation: 1.933e-4 = 1.933 * 10⁻⁴

Character Representation

- Represented as one-byte integers using ASCII.
- ASCII maps the range 0-127 to letters, punctuation, etc.

Dec nex	Oct	Chr	Dec H	lex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000	NULL	32 2	20	040		Space	64	40	100	@	@		60	140	`	
1 1	001	Start of Header	33 2	21	041	!	1	65	41	101	A	Α	97	61	141	a	а
2 2	002	Start of Text	34 2	22	042	"		66	42	102	B	В	98	62	142	b	b
3 3	003	End of Text	35 2	23	043	#	#	67	43	103	C	С	99	63	143	c	С
44	004	End of Transmission	36 2	24	044	\$	\$	68	44	104	D	D	100	64	144	d	d
5 5	005	Enquiry	37 2	25	045	%	%	69	45	105	E	E	101	65	145	e	е
6 6	006	Acknowledgment	38 2	26	046	&	&	70	46	106	F	F	102	66	146	f	f
77	007	Bell	39 2	27	047	'	1	71	47	107	G	G	103	67	147	g	g
8 8	010	Backspace	40 2	28	050	((72	48	110	H	Н	104	68	150	h	h
9 9	011	Horizontal Tab	41 2	29	051))	73	49	111	I	Ι	105	69	151	i	i
10 A	012	Line feed	42 2	2A	052	*	*	74	4A	112	J	J	106	6A	152	j	j
11 B	013	Vertical Tab	43 2	2B	053	+	+	75	4B	113	K	K	107	6B	153	k	k
12 C	014	Form feed	44 2	2C	054	,	,	76	4C	114	L	L	108	6C	154	l	
13 D	015	Carriage return	45 2	2D	055	-	-	77	4D	115	M	Μ	109	6D	155	m	m
14 E	016	Shift Out	46 2	2E	056	.		78	4E	116	N	Ν	110	6E	156	n	n
15 F	017	Shift In	47 2	2F	057	/	1	79	4F	117	O	0	111	6F	157	o	0
16 10	020	Data Link Escape	48 3	30	060	0	0	80	50	120	P	Ρ	112	70	160	p	р
17 11	021	Device Control 1	49 3	31	061	1	1	81	51	121	Q	Q	113	71	161	q	q
18 12	022	Device Control 2	50 3	32	062	2	2	82	52	122	R	R	114	72	162	r	r
19 13	023	Device Control 3	51 3	33	063	3	3	83	53	123	S	S	115	73	163	s	S
20 14	024	Device Control 4	52 3	34	064	4	4	84	54	124	T	Т	116	74	164	t	t
21 15	025	Negative Ack.	53 3	35	065	5	5	85	55	125	U	U	117	75	165	u	u
22 16	026	Synchronous idle	54 3	36	066	6	6	86	56	126	V	V	118	76		,	v
23 17	027	End of Trans. Block	55 3	37	067	7	7	87	57	127	W	W	119	77	167	w	W
24 18	030	Cancel	56 3	38	070	8	8	88	58	130	X	Х	120	78	170	x	х
25 19	031	End of Medium	57 3	39	071	9	9	89	59	131	Y	Υ	121	79	171	y	у
26 1A	032	Substitute	58 3	3A	072	:	:	90	5A	132	Z	Z	122	7A	172	z	z
27 1B	033	Escape	59 3	3B	073	;	;	91	5B	133	[[123	7B	173	{	{
28 1C	034	File Separator	60 3	3C	074	<	<	92	5C	134	\	1	124	7C	174		
29 1D	035	Group Separator	61 3	3D	075	=	=	93	5D	135]]	125	7D	175	}	}
30 1E	036	Record Separator	62 3	BE	076	>	>	94	5E	136	^	Λ	126	7E	176	~	~
31 1F	037	Unit Separator	63 3	3F	077	?	?	95	5F	137	_	_	127	7F	177		Del

asciicharstable.com

Characters and strings in C

```
char c = `J';
char s[6] = `hello";
s[0] = c;
printf(``%s\n", s);
```

Will print: Jello

- Character literals are surrounded by single quotes.
- String literals are surrounded by double quotes.
- Strings are stored as arrays of characters.

Discussion question: how can we tell where a string ends?

- A. Mark the end of the string with a special character.
- B. Associate a length value with the string, and use that to store its current length.
- C. A string is always the full length of the array it's contained within (e.g., char name[20] must be of length 20).
- D. All of these could work (which is best?).
- E. Some other mechanism (such as?).

What will this snippet print?

```
char c = `J';
char s[6] = "hello";
s[5] = c;
printf("%s\n", s);
```

- A. Jello
- B. hellJ
- C.helloJ
- D. Something else, that we can determine.
- E. Something else, but we can't tell what.