More about Binary

9/6/2016

Unsigned vs. Two’s Complement
8-bit example:

11 0 0 0 0 1 1

27426 + 21420 = 128+464+2+1
= 195

—27426 + 21420 = —-128464+2+1
= -61

Why does two’s complement work this way?

The traditional number line

Addition

= —t—
O =l
= ——

Unsigned ints on the number line

00000000 11111111
0 2N -1

Unsigned Integers

e Suppose we had one byte
* Can represent 28 (256) values
* If unsigned (strictly non-negative): 0 — 255

252 =171111100 Car odometer “rolls over”.
253=11111101 35333ﬁ
NNNNNIa

254=11111110
255=11111111
What if we add one more?

Unsigned Overflow

If we add two N-bit unsigned integers, the answer
can’t be more than 2N -1.

11111010
+ 00001100

X00000110

When there should be a carry from the last digit, it is
lost. This is called overflow, and the result of the
addition is incorrect.

In ¢s31, the number line is a circle

255(11111111)

0 \Addition
192 64
128
(10000000)

This means that all arithmetic is modular. With 8 bits,
arithmetic is mod 28; with N bits arithmetic is mod 2N.

255+4=259% 256=3

Suppose we want to support negative
values too (-127 to 127). Where should we
put -1 and -127 on the circle? Why?

1127 (11111111) -1(11111111)
\ 0 \ 0

1 -127

C: Put them somewhere else.

Option B is Two's Complement

* Borrows nice properties from the number line:

_1 1
\ 0 Addition
Addition
o |
-1 1
Only one instance of zero, with
-1 and 1 on either side of it.
" : -127| 127
Addition: moves to the right
128 “Like wrapping
number line

around a circle”

Does two’s complement, solve the
“rolling over” (overflow) problem?

-1

\ 0

A. Yes, it's gone.

B. Nope, it’s still there.

C. It's even worse now.

-127| 127

This is an issue we need to be aware of 128
when adding and subtracting!

Overflow, Revisited

\ unsigned

555 number line
0
Signed
192 Unsigned 64
178 -128
blpssis4elnls | endpoints of

signed
number line

If we add a positive number and a
negative number, will we have
overflow? (Assume they are the same # of bits)

A. Always
B. Sometimes

C. Never

-128

Signed Overflow

* Overflow: IFF the sign bits of operands are the same, but
the sign bit of result is different.
* Not enough bits to store result!

Signed addition (and subtraction):
2+-1=1 2+-2=0 2+-4==2

0010 0010 0010

+1111 +1110 +1100

1 0001 1 0000 1110
No chance of overflow here - signhs -128

of operands are different!

Signed Overflow

* Overflow: IFF the sign bits of operands are the same, but
the sign bit of result is different.
* Not enough bits to store result!

Signed addition (and subtraction):

24-1=1 2+-2=0 2+-4=-2 2+7=-7 -2+-7=7
0010 0010 0010 0010 1110

+1111 +1110 +1100 +0111 +1001

1 0001 1 0000 1110 1001 1 0111

\ J
|

Overflow here! Operand signs are the
same, and they don’t match output sign!

Overflow Rules

* Sighed:
* The sign bits of operands are the same, but the sign bit
of result is different.

* Can we formalize unsigned overflow?
* Need to include subtraction too, skipped it before.

Recall Subtraction Hardware

Negate and add 1 to second operand:

Can use the same circuit for add and subtract:

6-7==06+~7+1

input 2 --> possible bit flipper -->

possible +1 input

ADD CIRCUIT

---> result

Let’s call this +1 input: “Carry in”

How many of these unsigned
operations have overflowed?

4 bit unsigned values (range 0 to 15):

carry-in carry-out

Addition (carry-in = 0) \l/ \l/

9 + 11 0 1 0100
9 + 6 + + 0 0 1111
3+ 6 0 0 1001

Subtraction (carry-in = 1)
6 - 3 =
3 - 6 =

How many of these unsigned
operations have overflowed?

4 bit unsigned values (range 0 to 15):

carry-in carry-out

Addition (carry-in = 0) J \?
9 + 11 = 1001 + 1011 + 0 = 1 0100 = 4
9 + 6 = 1001 + 0110 + O = O 1111 = 15
3+ 6 = 0011 + 0110 + O = 0 1001 = 9
Subtraction (carry-in = 1) (~3)
6 - 3 = 0110 + 1100 + 1 =1 0011 = 3
3 - 6 = 0011 + 1010 + 1 =0 1101 = 13

(~6)

What's the pattern?

m o O ™ >
uUO B W NN =

Overtlow Rule Summary

* Signed overflow:

* The sign bits of operands are the same, but the sign bit of
result is different.

e Unsigned: overflow
* The carry-in bit is different from the carry-out.

Cin Cout Cin XOR Cout
0 0 0
0 1 1
1 0 1
1 1 0

So far, all arithmetic on values that were the same size. What if they’re different?

Suppose we have a signed 8-bit value,
00010110 (22), and we want to add it
to a signed 4-bit value, 1011 (-5). How
should we represent the four-bit value?

1101 (don’t change it)

00001101 (pad the beginning with 0’s)
11111011 (pad the beginning with 1’s)
Represent it some other way.

o 0w »

Sign Extension

* When combining signed values of different sizes, expand

the smaller to equivalent larger size:

char y=2, x=-13;
short z = 10;

z = Z T Vy;

0000000000001010
+ 00000010
0000000000000010

Z = zZ + X3

0000000000000101
+ 11110011
1111111111110011

Fill in high-order bits with sign-bit value to get same
numeric value in larger number of bytes.

Let’s verity that this works

4-bit signed value, sign extend to 8-bits, is it the
same value?

0111 ----> 0000 0111 obviously still 7
1010 —----> 1111 1010 isthisstill-6?

-128+64+32 +16+ 8+0+2+0= -6 vyes!

Operations on Bits

* For these, doesn’t matter how the bits are
interpreted (signed vs. unsigned)

* Bit-wise operators (AND, OR, NOT, XOR)

* Bit shifting

Bit-wise Operators

* bit operands, bit result (interpret as you please)

& (AND) | (OR) ~(NOT) A (XOR)

A B A & B A | B ~A A~ B

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

01010101 01101010 10101010 ~10101111
| 00100001 & 10111011 ~ 01101001 01010000

01110101 00101010 11000011

More Operations on Bits

e Bit-shift operators: << left shift, >> right shift

01010101 << 2 1is 01010100
2 high-order bits shifted out
2 low-order bits filled with O
01101010 << 4 1is 10100000
01010101 >> 2 1is 00010101
01101010 >> 4 is 00000110

10101100 >> 2 1is 00101011 (logical shift)
or 11101011 (arithmetic shift)

Arithmetic right shift: fills high-order bits w/sign bit
C automatically decides which to use based on type:
signed: arithmetic, unsigned: logical

Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent | don’t expect you
23 bits for precision to memorize this

value = (_1)sign * 1 fraction * 2(exponent-127)
let's just plug in some values and try it out

O0x40ac49ba: 0 10000001 01011000100100110111010
sign = 0 exp = 129 fraction = 2902458

= 1%1.2902458*22 = 5.16098

Think of scientific notation: 1.933e-4 =1.933 * 104

Character Representation

* Represented as one-byte integers using ASCII.
* ASCII maps the range 0-127 to letters, punctuation, etc.

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr
00 000 NULL 3220 040 Space | 64 40 100 @, @ 96 60 140 `
11 001 StartofHeader 3321 041 ! ! 6541 101 A A 97 61 141 a, a
22 002 StartofText 34 22 042 ", " 66 42 102 B B 98 62 142 b b
33 003 EndofText 35 23 043 # # 67 43 103 C C 99 63 143 c c
44 004 End of Transmission 36 24 044 $, $ 68 44 104 D D 100 64 144 d d
55 005 Enquiry 37 25 045 %, % 69 45 105 E E 101 65 145 e e
66 006 Acknowledgment 38 26 046 &, & 70 46 106 F F 102 66 146 f f
77 007 Bell 39 27 047 ', ' 71 47 107 G, G 103 67 147 g g
88 010 Backspace 40 28 050 ((72 48 110 H H 104 68 150 h h
99 011 Horizontal Tab 41 29 051)) 7349 111 I 1 105 69 151 i i

10 A 012 Linefeed 42 2A 052 * * 74 4A 112 J) 106 6A 152 j |
11 B 013 Vertical Tab 43 2B 053 + + 75 4B 113 K K 107 6B 153 k k
12C 014 Form feed 44 2C 054 , , 76 4C 114 L L 108 6C 154 l |
13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M M | 109 6D 155 m m
14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6 156 n n
15F 017 ShiftIn 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o
16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P P 11270 160 p p
17 11 021 Device Control 1 49 31 061 1, 1 8151 121 Q, Q 113 71 161 q q
18 12 022 Device Control 2 50 32 062 2 2 8252 122 R R 114 72 162 r r
19 13 023 Device Control 3 51 33 063 3 3 83 53 123 S S 11573 163 s s
20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 t t
21 15 025 Negative Ack. 5335 065 5 5 85 55 125 U U 117 75 165 u, u
2216 026 Synchronous idle 54 36 066 6 6 86 56 126 V, V 118 76 166 v v
23 17 027 End of Trans. Block 5537 067 7 7 87 57 127 W W | 119 77 167 w, w
24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x
2519 031 End of Medium 57 39 071 9, 9 89 59 131 Y Y 12179 171 y y
26 1A 032 Substitute 58 3A 072 : 90 5A 132 Z Z 122 7A 172 z z
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [| 123 7B 173 { {
28 1C 034 File Separator 60 3C 074 < < 92 5C 134 \ \ 124 7C 174 | |
29 1D 035 Group Separator 61 3D 075 =, = 93 5D 135]] 125 7D 175 } }
30 1E 036 Record Separator 62 3E 076 >, > 94 5B 136 ^ ~ 126 7E 176 ~, ~
31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _ _ 127 7F 177 Del

asciicharstable.com

Characters and strings in C

char ¢ = ‘J’;
char s[6] = “hello”;
s[0] = c;

printf (“%s\n”, s);
Will print: Jello
* Character literals are surrounded by single quotes.

* String literals are surrounded by double quotes.
e Strings are stored as arrays of characters.

Discussion question: how can we
tell where a string ends?

A. Mark the end of the string with a special character.

Associate a length value with the string, and use that to
store its current length.

A string is always the full length of the array it’s contained
within (e.g., char name[20] must be of length 20).

All of these could work (which is best?).

Some other mechanism (such as?).

What will this snippet print?

char ¢ = ‘J’;

char s[6] = “hello”;
s[5] = ¢y

printf (“%s\n”, s);

. Jello

. hellJd

. hellod

. Something else, that we can determine.
Something else, but we can’t tell what.

