
YOU LOOK
LIKE A THING

mr-AND
I I-OVE YOU
How Artif iciaL lntel.tigence Works

and Why lt's Making the World

a Weirder P[ace

Jane[[e Shane

M
voRAclous

Little, Brown and Company

New York t Boston . London



CHAPTER 3

How does lt actually learn?

R.-"-b". that in this book I'm using the term AI to mean "machine learn-
ing programs." (Refer to the handy chart on page 8 for a list of stuff that I

am or am not considering to be AI. Sorry, person in a robot suit.) A machine
learning program, as I explained in chapter 1, uses trial and error to solve a

problem. But how does that process work? How does a program go from
producing a jumble of random letters to writing recognizable knock-knock
jokes, all without a human telling it how words work or what a joke even is?

There are lots of different methods of machine learning, many of which
have been around for decades, often long before people started calling them
AL Today, these technologies are combined or remixed or made ever more pow-

erful by faster processing and bigger datasets. In this chapter we'll look at a few

of the most common types, peeking under the hood to see how they learn.

00



with extraneous data). But how can you solve problems using a bunch of
interconnected cells?

How does lt actuatly learn? 63a

The most powerful neural networks, the ones that take months and tens

of thousands of dollars'worth of computing time to train, have far more

neurons than my laptop's neural net, some even exceeding the neuron

count of a single honeybee. Looking at how the size of the world's largest

neural networks has increased over time, a leading researcher estimated

in 2016 that artificial neural networks might be able to approach the

number of neurons in the human brain by around 2050.r Will this mean

that Al will approach the intelligence of a human then? Probably not even

close. Each neuron in the human brain is much more complex than the

neurons in an artificial neural network-so complex that each human

neuron is more like a complete many-layered neural network all by itself.

So ratherthan being a neural network made of eighty-six billion neurons,

the human brain is a neural network made of eighty-six billion neural

networks. And there are far more complexities to our brains than there
are to ANNs, including many we don't fully understand yet.

THE MAGIC sANDWICH HOLE

-

Let's say, hypothetically, that we have discovered a magic hole in the
ground that produces a random sandwich every few seconds. (Okay, this is

,/,.

62 . You Look Ltke a Thlng and I Love You

NEURAL NETWORKS

These days, when people talk about AI, or deep learning, what they're

often referring to are artificial neural networks (ANNs). (ANNs have also

been known as cybernetics, or connectionism.)
There are lots of ways to build artificial neural networks, each meant for

a particular application. Some are specialized for image recognition, some

for language processing, some for generating music, some for optimizing
the produetivity of a cockroach farm, some for writing confusing jokes. But

they're all loosely modeled after the way the brain works. That's why they're

called artificial neural networks-their cousins, biological neural net-

works, are the original, far more complex models. In fact, when program-

mers made the first artificial neural networks, in the 1950s, the goal was to

test theories about how the brain works.

In other words, artificial neural networks are imitation brains.

They're built from a bunch of simple chunks of software, each able to

perform very simple math. These chunks are usually called cells or neu-

rons, an analogy with the neurons that make up our own brains. The power

ofthe neural network lies in how these cells are connected.

Now, compared to actual human brains, artificial neural networks

aren't that powerful. The ones I use for a lot of the text generation in this
book have as many neurons as... a worm.

1 pepper on cinnamon 10 1b cabbage

/1 milk sliced

- 1 requined cheddar cheese1 peeled nosemary

Unlike a human, the neural net is at least able to devote its entire one-

worm-power brain to the task at hand (if I don't accidentally distract it



How does lt actually learn? . 65

we've solved the problem of physically moving the sandwiches. It just has to
decide whether to save this sandwich for human consumption or throw it into
the recycling chute. (We're also going to ignore the mechanism of the recy-

cling chute - let's say it's another magic hole.)

This reduces our task to something simple and narrow- as we discovered

in chapter 2, that makes it a good candidate for automation with a machine

learning algorithm. we have a bunch of inputs (the names of the ingredients),
and we want to build an algorithm that will use them to figure out our single
output, a number that indicates whether the sandwich is good. we can draw a
simple "black box" picture of our algorithm, and it looks like this:

Inputs 0utput

Cheese

Eggshel I s

Mud

Ch i cken

Peanut butter

Ma rs hma 1 1ow

Delic ious nes s

We want the "deliciousness" output to change depending on the com-
bination of ingredients in the sandwich. So if a sandwich contains egg-

shells and mud, our black box should do this:

l"lagical necycling hole

PLease, no bLach hoLes or
tordises.

Mystenies
/Brains

64 You Look Llke a Thlng and I Love You

very hypothetical.) The problem is that the sandwiches are very, very ran-

dom. Ingredients include jam, ice cubes, and old socks. If we want to find

the good ones, we'll have to sit in front of the hole all day and sort them.

AIas, ear wax

But that's going to get tedious. Good sandwiches are only one in a

thousand. However, they are very, very good sandwiches. Let's try to auto-

mate the job.

I can help !

To save ourselves time and effort, we want to build a neural network that

can look at each sandwich and decide whether it's good. For now, let's ignore

the problem of how to get the neural network to recognize the ingredients the

sandwiches are made of-that's a really hard problem. And let's ignore the

problem of how the neural network is going to pick up each sandwich. That's

also really, really hard-not just recognizing the motion of the sandwich as it
flies from the hole but also instructing a robot arm to grab a slim paper-and-

motor-oil sandwich or a thick bowling-ball-and-mustard sandwich. Let's

assume, then, that the neural net knows what's in each sandwich and that



How does lt actually learn? a 67

Inputs

Cheese

Eggshells

l'1ud

chicken

Peanut butter

tlanshmallow

0utput

Deliclousness

Let's test it with some sample sandwiches. Suppose the sandwich con-

tains mud and eggshells. Mud and eggshells both contribute a 0, so the
deliciousness rating is 0 + 0 = 0.

Inputs 0utput
tl/ a
AVOlD

EEssheLls & nud
cheese Ir

Eggshells

14ud

chi cken

Peanut butter

Manshmallow

O+0=O

Deliciousness

But a peanut-butter-and-marshmallow sandwich will get a rating of 1 +

7 = 2. (Congratulations! You have been blessed with that New England
delicacy, the fluffernutter.)

Inputs 0utput

:
Peanut butter &
narshmallow

Chee s e

Eggshells

14ud

chic ken

Peanut butter

Marshmallow

1+7=2

Deliciousness

F LUF FERNUTTER I

EXCELLENT !

66 . You Look Llke a Thlng and I Love You

Inputs Output

\t/,/ I
NOT YUMMY

Eggshells & mud
cheese

Eggshells

Mud

Ch ic ken

Peanut butten

llarshmallow

Delic iousnes s

But if the sandwich contains chicken and cheese, it should do this

instead:

OutputInputs

a
YES PLEASE

chicken & cheese
cheese

Eggshel I s

Mud

chicken

Peanut butter

Marshmallow

lrl

Delic ious nes s

Let's look at how things are hooked up inside the black box.

First, let's make it simple. We hook up all the inputs (all the ingredients)

to our single output. To get our deliciousness rating, we add each ingredi-

ent's contribution. Clearly each ingredient should not contribute equally -
the presence of cheese would make the sandwich more delicious, while the

presence of mud would make the sandwich less delicious. So each ingredi-

ent gets a different weight. The good ones get a weight of 1, while the ones

we want to avoid get a weight of 0. Our neural network looks like this:

l4ysteries
/Brains

Mysteries
/Brains



DEEP LEARNING

Adding hidden layers to our neural network gets us a more sophisti-

cated algorithm, one that's able to judge sandwiches as more than the

sum of their ingredients. ln this chapter, we've only added one hid-

den layeq but real-world neural networks often have several. Each new

layer means a new way to combine the insights from the previous

layer-at higher and higher levels of complexity, we hope. This

approach-lots of hidden layers for lots of complexity-is known as

deep learning.

How does lt actually tearn? 69a

Input pixels
Found sone ed8es! oefinltely got Furl A (irclel

Here they arel curves & 1Ines, Tso trianglesl///
Edges Cutves & Llnes Textures &

slmple shapes

Eyeballs I A
polnty earl

simple
features

A catl

0utput

With this neural network, we can finally avoid bad ingredients by con-

necting them to a cell that we'll call the punisher. We'll give that cell a

huge negative weight (let's say -100) and connect everything bad to it
with a weight of 10. Let's make the first cell the punisher and connect the
mud and eggshells to it. Here's what that looks like:

68 . You Look Llke a Thlng and I Love You

with this neural network configuration, we successfully avoid all the

sandwiches that contain only eggshells, mud, and other inedible things.

But this simple one-layer neural network is not sophisticated enough to

recognize that some ingredients, while delicious on their own, are not

delicious in combination with certain others. It's going to rate a chicken-

and-marshmallow sandwich as delicious, the equal of the fluffernutter. It's

also susceptible to something we'll call the big sandwich bug: a sandwich

that contains mulch might still be rated as tasty if it contains enough good

ingredients to cancel out the mulch.

To get a better neural network, we're going to need another layer of

cells.

Inputs output

cheese

Eggshells

lvlud

chic ken

Peanut butter

Marshmallow

Deliciousness

Here's our neural network now. Each ingredient is connected to our

new layer ofcells, and each cell is connected to the output. This new layer

is called a hidden layer, because the user only sees the inputs and the out-

puts. fust as before, each connection has its own weight, so it affects our

final deliciousness output in different ways. This isn't deep learning yet

(that would require even more layers), but we're getting there.

o

o

o -'J.OO

70



How does lt actually tearn? . 71

A chicken-and-cheese sandwich will cause this cell to contribute a

cheerful 1 + 1 = 2 to the final output. But adding marshmallow to the

chicken-and-cheese sandwich doesn't hurt it at all, even though it makes a

pretty objectively less delicious sandwich. To fix that, we'll need other cells

that specifically look for and punish incompatibilities'

Cell 3, for example, might look for the chicken-marshmallow combina-

tion (let's call it the cluckerfluffer) and severely punish any sandwich that

contains it. It would be hooked up like this:

Inputs output

cluckerfluffer

Cell 3 returns a devastating (10 + 10) x -100 = -2000 to any sandwich

that dares to combine chicken and marshmallow. It's acting like a very

specialized punisher cell, designed specifically to punish chicken and

marshmallow Notice that I've shown an extra part of the cluckerfluffer

cell here, called the activation function, because without it, the cell will

punish any sandwich that contains chicken or marshmallow. with a thresh-

old of 15, the activation function stops the cell from turning on when just

chicken (10 points) or marshmallow (10 points) is present - it will return

a neutral 0. But if both are present (10 + 10 = 20 points),

the threshold of 15 is exceeded, and the cell turns on. Boom! The acti-

vated cell punishes any combination of ingredients that exceeds its

threshold.

chee s e

Eggshells

l4u d

Chic ken

Peanut butten

I'lanshma llow

Deliciousnesst
Activation Function

7

o

70 You Look Llke a Thtng and I Love Youa

NoW no.matter what happens in the other cells, a sandwich is likely to

fail if it contains eggshells or mud. Using the punisher cell, we can beat the

big sandwich bug.

we can do other things with the rest of the cells-like finally make a

neural network that knows which ingredient combos work. Let's use the sec-

ond cell to recognize chicken-and-cheese-type sandwiches. We'll refer to it

as the deli sandwich cell. We connect chicken and cheese to it with weights

of 1 (we'll also do this with ham and turkey and mayo) and connect every-

thing else to it with weights of 0. And this cell gets connected to the output

with a modest weight of 1. The deli sandwich cell is a good thing, but if we

get too excited about it and assign it a very high weight, we'll be in danger of

making the punisher cell less powerful. Let's look at what this cell does.

Inputs

cheese

EggsheIls

14ud

chlcken

Peanut butter

Marshmallow

@

Output

Punisher cell

&

Deliciousness

Deliciousness

(LO+70)x-7oo=-2090

Output

DeIi sandwich cell

Inputs

chee s e

EggsheIls

Mud

chicken

Peanut butter

l4arshnallow

(1+1)x1=2



neural net rates each sandwich, it needs to compare its ratings against

those of a panel of cooperative sandwich judges. Note: never volunteer to

test the early stages of a machine learning algorithm.

For this example, we'll go back to the very simple neural network'

Remember, since we're trying to train it from scratch, we're ignoring all our

prior knowledge about what the weights should be, and starting from ran-

dom ones. Here they are:

How does tt actuatly [earn? 73a

Inputs

ch eese

Eggshells

0utput

Deliciousnes s

l'4arshmallow

It hates cheese. lt loves marshmallow. It's rather fond of mud. And it can

take or leave eggshells.

The neural net looks at the first sandwich that pops out of the magic

sandwich hole and using its (terrible) judgment, gives it a score. It's a

marshmallow, eggshell, and mud sandwich, so it gets a score of 10 + 0 +

2 = \2. Wow! That's a really, really great score!

It presents the sandwich to the panel of human judges. Harsh reality:

it's not a popular sandwich.

Now comes the part where the neural net has a chance to improve: it
looks at what would have happened if its weights were slightly different'

From this one sandwich, it doesn't know what the problem is. Was it too

excited about the marshmallow? Are eggshells not neutral but maybe even

a teensy bit bad? It can't tell. But if it looks at a batch of ten sandwiches,

the scores it gave them, and the scores the human judges gave them, it can

Eggshells, mud &

marshmallow

:

O+2+lQ=!2

l'lud

chicken

Peanut

hJot^l | !

72 o You Look Llke a Thtng and I Love You

Cluckerfluffen

With all the cells connected in similarly sophisticated configurations,
we have a neural net that can sort out the best sandwiches the magic hole
has to offer.

TI'IE TRAINING PROCESS

So now we know what a well-configured sandwich-picking neural network
might look like. But the point of using machine learning is that we don't
have to set up the neural network by hand. Instead, it should be able to
configure itself rnto something that does a great sandwich-picking job.

How does this training process work?

Let's go back to a simple two-layer neural network. At the beginning of
the training process, it's starting completely from scratch, with random
weights for each ingredient. Chances are it's very, very bad at rating
sandwiches.

" li/
l-

We'll need to train it with some real-world data - some examples of the
correct way to rate a sandwich, as demonstrated by real humans. As the



Another pitfall that we'll have to be careful of is the issue of class

imbalance. Remember that only a handful of every thousand sandwiches

from the sandwich hole are delicious. Rather than go through all the trou-

ble of figuring out how to weight each ingredient, or how to use them in

combination, the neural net may realize it can achieve 99.9 percent accu-

racy by rating each sandwich as terrible, no matter what.

Inputs Output

How does lt actually learn? 75a

a_

cheese

Eggshells

@'GJ
l"lud

ch icken

Peanut

l"larshmallow

To combat class imbalance, we'll need to prefilter our training sandwiches

so that there are approximately equal proportions of sandwiches that are

delicious and awful. Even then, the neural net might not learn about ingredi-

ents that are usually to be avoided but delicious in very specific circum-

stances. Marshmallow might be an example of such an ingredient-awful

with most of the usual sandwich ingredients but delicious in a fluffernutter

(and maybe with chocolate and bananas). If the neural net doesn't see fluffer-

nutters in training, or sees them very rarely, it may decide that it can achieve

pretty good accuracy by rejecting anything that contains marshmallow.

Class imbalance-related problems show up all the time in practical

applications, usually when we ask Al to detect a rare event. When peo-

ple try to predict when customers will leave a comPany, they have a lot

7/+ . You Look Llke a Thlng and I Love You

discover that if it had in general given mud a lower weight, lowering the

score of any sandwich that contains mud, its scores would match those of

the human judges a bit better.

' THANK you.

/t r\

/ just isn't that
/ popurar.

With its.newly adjusted weights, it's time for another iteration. The neu-

ral net rates another bunch of sandwiches, compares its scores against

those of the human judges, and adjusts its weights again. After thousands

more iterations and tens of thousands of sandwiches, the human judges

are very, very sick ofthis, but the neural network is doing a lot better.

Huh, l'4aybe nud -a-msj&
wtrtrffi\

There are plenty of pitfalls in the way of progress, though. As I men-

tioned above, this simple neural network only knows if particular ingredi-

ents are generally good or generally bad, and it isn't able to come up with a

nuanced idea of which combinations work. For that, it needs a more sophis-

ticated structure, one with hidden layers of cells. It needs to evolve punish-

ers and deli sandwich cells.

correct
I think you'ne
gonna hate aII
of these.

" li/"@
-n-asA
fwtrtrffi1

1l r\

spinach and cheese! \But you ttked
marshmallow In the
Iast sandwich ! ,ft ffi R fl.

wtrtrffi),&\:/



to be spread among several cells - and in the case of some cells, it's diffi-

cult or impossible to tell what tasks they accomplish'

To explore this phenomenon, Iet's look at some of the cells of a fully

trdined neural net. Built and trained by researchers at OpenAI,3 this par-

ticular neural net looked at more than eighty-two million Amazon product

reviews letter by letter and tried to predict which letter would come next.

This is another recurrent neural network, the same general sort as the one

that generated the knock-knock jokes, ice cream flavors, and recipes listed

in chapters 7 and2. This one's larger - it has approximately as many neu-

rons as a jelly fish. Here are a few examples of reviews it generated:

This is a great book that I would recommend to anyone

who loves the great story of the characters and t,he

series of books.

I love this song. I listen to it over and over again and

never get tired of it. It is so addicting. I love itll

This is the best product T have ever used to clean my

shower stal1. ft is not greasy and does not strip the

waLer of the water and stain Lhe whiLe carpet. I have

been using it for a few years and it works well for me

These workout DVDs are very useful. You can cover your

whole butt with them.

I bought Lhis thinking it would be good for the garage.

Who has a 1ot of lake water? I was Lotally wrong. It was

simple and fast. The night grizzly has not harmed it and

we have had this for over 3 months. The guests are

inspired and they really enjoy it. My dad loves itl

This particular neural net has an input for each letter or punctuation

How does lt actually learn? 77a76 a You Look Llke a Thlng and I Love You

more examples of customers who stay than customers who leave, so

there's a danger the Al will take the shortcut of deciding that all cus-

tomers will stay forever. Detecting fraudulent logins and hacking attacks

has a similar problem, since actual attacks are rare. People also report

class imbalance problems in medical imaging, where they may be look-

ing for just one abnormal cell among hundreds-the temptation is for

the Al to shortcut its way to high accuracy iust by predicting that all cells

are healthy. Astronomers also run into class imbalance problems when

they Lrse Al, since many interesting celestial events are rare-there
was a solar-flare-detecting program that discovered it could achieve

near 100 percent accuracy by predicting zero solar flares, since these

were very rare in the training data.2

Nhich of oun 100
customers will leave?

None of them.

\ lthat about the one on
the weekly cockroach
plan?

None. l-iI1I. Leave

\ a"e you su""?

Yes. I am 99% accurate

WHEN CELLS WORK TOGETHER

In the sandwich-sorting example above, we saw how a layer of cells can

increase the complexity of the tasks a neural network can perform. We

built a deli sandwich cell that responded to combinations of deli meats

and cheeses, and we built a cluckerfluffer cell that punished any sandwich

that tried to use chicken and marshmallow in combination. But in a neural

network that trains itself, using trial and error to adjust the connections

between cells, it's usually a lot harder to identify each cell's job. Tasks tend



How does lt actually learn? . 79

had a majon prol>.l.<rm with the arirl-i o with 10 new songsi

the exer':il.'i-.i.r::ri. of the voc:;lr.ls and ed:t : ni,, was av:i.r;i.l . The

next da!r, -1. w.,r-s j-rr a vt:t..:<>'t:<.i".:.:lq str-;,.i,i-o and j. i:::i'i:i'i.; te11

you how many times r had to h-i L the plav br;t. Lon to see

'*i;ij,i:e the song v,'as go:i"lig.

This cell is contributing to the neural net's prediction of which letters

come next, but its function is mysterious. It's reacting to certain letters, or

certain combinations of letters, but not in a way that makes sense to us.

Why was it really excited about the letters um in album but not the letters

al? Whal is it actually doing? It's just one small piece of the puzzle working

with a lot of other cells. Almost all the cells in a neural net are as mysteri-

ous as this one.

However, every once in a while, there will be a cell whose job is
recognizable - a cell that activates whenever we're between a pair of paren-

theses or that activates increasingly strongly the longer a sentence gets.a

The people who trained the product-review neural net noticed that it had

one cell that was doing something they could recognize: it was responding

to whether the review was positive or negative. As part of its task of predict-

ing the next letter in a review, the neural net seems to have decided it was

important to determine whether to praise the product or trash it. Here's the

activation of the "sentiment neuron" on that same review. Note that a light

color indicates high activation, which means it thinks the review is positive:

i;'ilt:: ii,(,., 1.:t:.j.c: j.::1:)i).) ()i'.. l:-.flc.i.lrv;r:..i.huli:L; <:i. i.-.1:ei..i:i.r.1. ilv;:al.

l. i.r.i.l.{.- iicji-.u.il i.-i.v n.r,,tdr: 'i1r.:.) i:rl). .i.ll'ti-.iir.ni.. r.:.i ilsl;.i.c: tlr.:(.: l.:.;1i., i. i}. 1.::i:)

ii.ii.i r,l ina.-]or i):li:)li-1.+\til w.i.i:l; i:..llrl ."ii;r'j:i.i::, \i::i,i-i:1. -1..0 ljll{rr'.ri i:ii.rlig:ii

the execution of the vocals and editing was awful. The

next day, I was in a recording studio and r can't te11

you how many times I had to hit the "play" button to see

where Lhe song was going.

78 You Look Llke a Thlng and I love You

mark it could encounter (similar to the sandwich sorter, which had one input
for each sandwich ingredient) and can look back at the past few letters and

punctuation marks. (lt is as if the sandwich rater's scoring depended a bit on

the last few sandwiches it had seen - maybe it can keep track of whether we

might be sick of cheese sandwiches and adjust the next cheese sandwich's

rating accordingly.) And rather than having a single output, as the sandwich

sorter does, the review-writing neural net has a lot of them, one output for
each letter or punctuation mark that it could choose as most likely to come

next in the review. Ifit sees the sequence "l own twenty eggbeaters and this

is my very favorit," then the letter e will be the most likely next choice.

Based on the outputs, we can take a look at each cell and see when it's
"active," letting us make an educated guess about what its function is. In our

sandwich-sorter example above, the deli sandwich cell would be active when

it sees lots of meat and cheese and inactive when it sees socks or marbles or
peanut butter. However, most of the neurons in the Amazon product-review

neural net are going to be nowhere near as interpretable as deli cells and

punisher neurons. Instead, most of the rules the neural net comes up with
are going to be unintelligible to us. Sometimes we can guess what a cell's

function will be, but far more frequently, we have no idea what it's doing.

Here's the activity of one of the product-review algorithm's cells (the

2,387Ih) as it generates a review (white = active, dark = inactive):

For me, this .i.s one of the few a.l.i:;.r.i.mr,r of the;i.rs .1. own

thi,lt ar-:i..ir;:r .i. I";, made me an.;.r:.ijl..ant 1.l.asr.r.:.c pop fan. -1. als,:o



How does lt actually tearn? . 81

same goes for other types of neural networks-and that's too bad, since

we'd love to be able to tell when they're making unfortunate mistakes and

to learn from their strategies.

In image-recognizing algorithms, though, it's a bit easier to find cells

whose jobs you can identify. There the inputs are the individual pixels of a

particular image, and the outputs are the various possible ways to classify

the image (dog, cat, giraffe, cockroach, and so on). Most image recognition

algorithms have lots and lots of layers of cells in between - the hidden lay-

ers. And in most image recognition algorithms, there are cells or groups of

cells whose functions we can identify if we analyze the neural net in the

right way. We can look at the collections of cells that activate when they

see particular things, or we can tweak the input image and see which

changes make the cells activate most strongly.

DEEP DREAMING

Tweaking an image to make the neurons more excited about

technique used to make the famous Google DeepDream image

an image-identifying neural network turned ordinary images into land-

scapes full of trippy dog faces and fantastic conglomerations of arches

and windows.

To make a DeepDream image, you start with a neural network that

has been trained to recognize something-dogs, for example. Then

you choose one of its cells and gradually change the image to make that

cell increasingly more excited about it. lf the cell is trained to recognize

dog faces, then it will get more excited the more it sees areas in the

image tlrat look like dog faces. By the time you've changed the image to

the cell's liking, itwill be highly distorted and covered in dogs.

80 You Look Ltke a Thlng and I Love You

The review starts out very positive, and the sentiment neuron is highly
activated. Midway through, however, it switches tone, and the cell's activa-

tion level goes way down.

Here's another example of the sentiment neuron at work. It has low

activity when the review is neutral or critical but quickly swings into high
gear whenever it detects a change in sentiment:

The Harry Potter Fi1e, from which the previous one was

based (which means it, has a standard size liner) weighs
a ton.and this one -i-s l.r.ugel .1. w1.i -i rkrf-i-ni-t;r:-i.y 1-:L.r"i;. 

j^1,: o;',:.

o\,rii):r")/ t-oagter i. i::r.'e i..11. i..r').e .hit.,jhen si.nr':<t:, _i.i. i.l.: l.i:,:lt::

c;<.;i,,c1"'1'lt..j.l;.:.$ o.o\t <,;l i-.it,l l;LL;i.. <-:<.rllx,:tly lli..l,r;i.r.r$ a.via.a. i'iii.i(j{r,

.i.t:, :i.s ri.er.i--j..ir:i.i..'..,r].1, Jlti/ i-,:Ji...,)i"'i..i:c rrtf;iri..c t:Jl. a..i...i.. i.:l.t'l],.]- .L "rio-!.l.id

.::.1:r..i (]itliii(:.: j].d i,..it-i. S i.O Ai{ )i ir'fj l:ij 1

But it's less good at detecting sentiment in other kinds of text. Most
people would not classify this passage from Edgar Allan Poe's "The Fall of
the House of Usher" as positive in sentiment, but this particular neural net
thinks it's mostly positive:

Overpc>wi:red by an i.rrt.einslr s..rr:.time;:t. of hoz:,'c>r,

unaccount;.rbIe yet unendurible, I threw {)n itly c:.l.ot..hes

wit.h iiasi,e (fo.r: .i. fe.1.r- ,..itat. I ghoul,1 ir1..ee1> j.t.o fil(.]t-{.):

iiur:i :rg ti:re lli.ght,) and r,:::<Jeavoured t.o a.r-ousi,: myse1l:

from t1:o pr.i.-iab.: i: l:r.:r:cJ.-i.t.i-o;.';. j-t:.tr.: 'i:h:.ch I had .(a1.L.t:';, bv
par.:irig iai;i.d].y iro and fro t.hr,:,r;gi't tj:r.e apartmeni:.

I guess a movie could overpower you by an intense sentiment of horror
and be a good movie if that's what it was supposed to do.

Again, it's unusual to find a cell in a text-generating or text-analyzing
algorithm that behaves as transparently as the sentiment neuron. The

a



How does lt actually learn? . 83

MARKOV CHAINS

A Markov chain is an algorithm that can tackle many of the same prob-

lems as the recurrent neural network (RNN) that generated the recipes,

ice cream flavors, Amazon reviews, and metal bands in this book. Like the

RNN, it looks at what happened in the past (words previously used in a

sentence or last week's weather, for example) and predicts what's most

likely to haPPen next'

Markov chains are more lightweight than most neural networks and

quicker to train. That's why the predictive-text function of smartphones is

usually a Markov chain rather than an RNN.

However, a Markov chain gets exponentially more unwieldy as its mem-

ory increases. Most predictive-text Markov chains, for example, have mem-

ories that are only three to five words long. RNNs, by contrast, can have

memories that are hundreds of words long - or even longer with the use of

ISTM (long short-term memory) and convolution tricks. In chapter 2 we

saw how important memory length is when short memory made an RNN

lose track of important information. The same is true for Markov chains.

I trained a Markov chain with a dataset of Disney songs using a train-

able predictive-text keyboard.T Training took only a few seconds as

opposed to a few minutes for an RNN. But this Markov chain has a three-

word memory. That is, the words it suggests are the ones it thinks are the

most likely based on the previous three words in the song. When I had it
generate a song, choosing only its top suggestion at every step, here is what

it produced:

The sea)

under t.he sea)

under the sea)

under the sea)

00

\ How do you like this
painting?

meh

00

\ How about now?

I'm intrigued

aa

\ How about now?

THIS IS THE BEST
PAINTING EVER

82 You Look Llke a Thlng and I Love You

The smallest groups of cells seem to look for edges, colors, and very
simple textures. They might report vertical lines, curves, or green grassy

textures. In subsequent layers, larger groups ofcells look for collections of
edges, colors, and textures or for simple features. Some researchers at

Google, for example, analyzed their GoogLeNET image recognition algo-

rithm and found that it had several collections of cells that were looking
specifically for floppy versus pointy ears on animals, which helped it dis-
tinguish dogs from cats.s Other cells got excited about fur or eyeballs.

Image-generating neural networks also have some cells that do identifi-
able jobs. We can do "brain surgery" on image-generating neural networks,

removing certain cells to see how the generated image changes.6 A group

at MIT found that it could deactivate cells to remove elements from gener-

ated images. Interestingly, elements that the neural net deemed "essential"

were more difficult to remove than others - for example, it was easier to
remove curtains from an image of a conference room than to remove the
tables and chairs.

Now let's look at another kind of algorithm, one you've probably inter-
acted with directly if you've used the predictive-text feature of a

smartphone.

a



How does tt actually learn? . 85

You think i can open up

where we'll see how you feel
it all my dreams will be mine

is something there before

she wil-]. be better time

These are a lot more interesting, but they don't make much sense. And

songs-and poetry-are pretty forgiving when it comes to grammar,

structure, and coherence. If I give the Markov chain a different dataset to

learn, then its shortcomings become even more obvious.

Here's a Markov chain trained on a list of April Fool's Day pranks as it
chooses the most probable next word at each step. (lt never suggested

punctuation, so the line breaks are my additions.)

The door knob off a door and put it back on backwards
anFr'l rruv! Lrl

Do nothing all day to a co of someone's ad in the paper

for a garage sale at someone of an impending prank
Then do nothing all day to a co of someone's ad in the

paper for a garage sale at.

A predictive-text Markov chain isn't likely to hold a conversation with a

customer or write a story that can be used as a new video-game quest (both

of which are things that people are trying to get RNNs to do one day). But

one thing it can do is suggest likely words that might come next in a par-

ticular training set.

The people at Botnik, for example, use Markov chains trained on various

datasets (Harry Potter books, Star Trek episodes, Yelp reviews, and more) to

suggest words to human writers. The unexpected Markov chain suggestions

often help the writers take their texts in weirdly surreal directions.

84 a You Look Llke a Thlng and I Love You

under the sea)

under the sea)

under the sea)

It doesn't know how many times to sing "under the sea" because it
doesn't know how many times it has already sung it.

If I start it out with the beginning of the song "Beauty and the Beast"

("Tale as Old as Time"), it quickly gets stuck again.

Tale .as o1d as time
song as old as t,ime

song as old as time
song as old as time

In several verses of "Beauty and the Beast," the words "tale as old as

time" are immediately followed by the words "song as old as rhyme." But

when this Markov chain is looking at the phrase "as old as," it doesn't know

which of those two verses it's in the middle of writing.
I can get it out of its trap by choosing the second most probable word at

every step. Then it writes this:

A whole world
bright young master
you're with all
ya Lhink you're by wonder

by the powers

and i got downhearted
alone hellfire dark side

And choosing the third most probable word each time:



How does lt actuatly learn? . 87

For the sake of comparison, I also used a more complex, data-intensive

RNN to generate April Fool's Day pranks. ln this case, the RNN gener-

ated the entire prank, punctuation and all. However, there was still an

element of human creativity involved-l had to sort through all the

RNN-generated pranks looking for the funniest ones.

Make a food in the office computer of someone.

Hide al-l of the entrance to your office building
if it. only has one entrance.

Putting googly eyes on someone's computer mouse

so that, iL won't work.
Set out a bowl filted with a mix of M&M's,

Skittles, and Reese's Pieces.
Place a pair of pants and shoes in your ice

dispenser.

You can conduct similar experiments with the predictive text included

in most phone messaging apps. If you start with "l was born..." or "Once

upon a time..." and keep clicking the phone's suggested words, you'll get a

strange piece of writing straight from the innards of a machine learning

algorithm. And because training a new Markov chain is relatively quick

and easy, the text you get is specific to you. Your phone's predictive text

and autocorrect Markov chains update themselves as you type, training

themselves on what you write. That's why if you make a typo, it may haunt

you for quite some time.

Google Docs may have fallen victim to a similar effect when users

reported its autocorrect would change "a lot" to "alot" and suggested

"gonna" instead of "going." Google was using a context-aware autocorrect

86 . You Look Llke a Thlng and I Love You

Rather than allowing the Markov chain and its short memory to try to
choose the next word, I can let it come up with a bunch of options qn4

present them to me-just as predictive text does when I'm composing q

text message to someone.

Here's an example of what it looks like to interact with one of Botnik,s

trained Markov chains, this one trained on Harry Potter books:

Pr€dictlvE fiEl.ter

Source: Hp Attribution

l;l l:rt

:."'i.:

:..,.t.. - 1

i':

1-:.:i. r;

shuffle i4 Publigh O

it tr;.

tr.t-iil

11nr): -") ' iI

{a: L)lt:{: t:, ta

:l:,i 1:i.. r: il J-

l.:irir.: i.i:'

:t, i-t:,:

And here are some new April Fool's Day pranks I wrote with the help of
the predictive text of a trained Markov chain:

Put plastic wrap pellets on your 1ips.
Arrange the kitchen sink into a chicken head.

Put a glow st.ick in your hand and pretend t,o sneeze on

the roof.
Make a toilet seaL int,o pants and then ask your car to

-t1vu.



cated as the number of cells in our neural network increases, we can

handle the cockroach situation with more nuance if we have a larger deci-

sion tree.

If the cockroach farm is strangely quiet, yet the roaches have not

escaped, then there may be other explanations (perhaps even more unset-

tling) besides "they're all dead." With a larger tree we could ask whether

there are dead cockroaches around, how smart the cockroaches are known

to be, and whether the cockroach-crushing machines have been mysteri-

ously sabotaged.

With lots and lots of inputs and choices, the decision tree can become

hugely complex (or, to use the programming parlance of deep learning,

very deep). It could become so deep that it encompasses every possible

input, decision, and outcome in the training set, but then the chart would

only work for the specific situations from the training set. That is, it would

overfit the training data. A human expert could cleverly construct a huge

decision tree that avoids overfitting and can handle most decisions with-

out fixating on specific, probably irrelevant data. For example, if it was

cloudy and cool the last time the cockroaches got out, a human is smart

enough to know that having the same weather doesn't necessarily have

anything to do with whether the cockroaches will escape again.

But an alternative approach to having a human carefully build a huge

How does lt actua[[y learn? 89

Can you hean

/ 
skittening noises?

Yes

I

No

Have they all
escaped ?

t
Yes

I
Too late now

I
Do not evacuate

cocknoaches in the
noom ?

No

I
cocknoach plague

I
Evacuate !

No

You'ne safe

Do not evacuate

Yes
I

They'ne hene

I
Evacuate !

88 " You Look Llke a Thlng and I Love You

Did you mean:
spgheiit sauce?

that scanned the internet to decide which suggestions to make.8 On the
plus side, a context-aware autocorrect is able to spot typos that form real

words (like "gong" typed intead of "going"), and add new words as soon as

they become common. However, as any user of the internet knows, com-

mon usag€ rarely dovetails with the grammatically "correct" formal usage

you'd want in a word processor's autocorrect feature. Although Google

hasn't talked specifically about these autocorrect bugs, the bugs do tend
to disappear after users report them.

RANDOM FORESTS

A random forest algorithm is a type of machine learning algorithm fre-

quently used for prediction and classification-predicting customer

behavior, for example, or making book recommendations or judging the
quality of a wine - based on a bunch of input data.

To understand the forest, let's start with the trees. A random forest

algorithm is made of individual units called decision trees. A decision tree
is basically a flowchart that leads to an outcome based on the information
we have. And, pleasingly, decision trees do kind of look like upside-down

trees.

On the next page is a sample decision tree for, hypothetically, whether
to evacuate a giant cockroach farm.

The decision tree keeps track of how we use information (ominous

noises, the presence of cockroaches) to make decisions about how to han-

dle the situation. Just as our sandwich decisions become more sophisti-



90 You Look Llke a Thlng and I Love Youa

decision tree is to use the random forest method of machine learning. In
much the same way as a neural network uses trial and error to configure

the connections between its cells, a random forest algorithm uses trial and

error to configure itself. A random forest is made of a bunch of tiny (that is,

shallow) trees that each consider a tiny bit of information to make a couple

of small decisions. During the training process, each shallow tree learns

which information to pay attention to and what the outcome should be.

Each tiny tree's decision probably won't be very good, because it's based

on very limited information. But if all the tiny trees in the forest pool their
decisions. and vote on the final outcome, they will be much more accurate

than any individual tree. (The same phenomenon holds true for human

voters: if people try to guess how many marbles are in a jar, individually
their guesses may be way off, but on average their guesses will likely be

very close to the real answer.) The trees in a random forest can pool their
decisions on all sorts of topics, coming up with an accurate picture of stag-

geringly complex scenarios. One recent application, for example, was sort-

ing through hundreds of thousands of genomic patterns to determine

which species of livestock was responsible for a dangerous E. coli

outbreak.e

If we used a random forest to handle the cockroach situation, here's

what a few of its trees might look like:

Ane thene cocknoaches in
the nefnigerator?

No

I
Do not evacuate

Yes

I
Have they eaten
the supen senum?

/\
No

Do not evacuate

Yes

l
Evacuate !

How does lt actually learn? 91a

Yes

Evacuate ! Do not evacuate

Now, each individual tree is only seeing a very small bit of the situation.

There may be a perfectly reasonable explanation for why Barney isn't

around - perhaps Barney has merely called in sick. And if the cockroaches

have not actually eaten the super serum, that doesn't necessarily mean

we're safe. Maybe the cockroaches have taken samples of the super serum

and are even now brewing up a huge batch, enough for the 1.2 billion
cockroaches in the facility.

But the trees are combining their individual hunches, and with Barney

mysteriously missing, the serum gone, and your password mysteriously

changed, the decision to evacuate may be a prudent one.

Have you seen Barney
late1y ?

No

I

Evacuate !

No

t
Is Barney scheduled
to be on vacation?

Yes

I

Do not evacuate

Do not evacuate

Yes

Did you get a password
change notification?

/\
No Yes
ll

Do not evacuate Did you change youn
passwond necently?

/\
No



92 You Look Llke a Thlng and I Love You

EVOLUTIONARY ALGORITHMS

AI refines its understanding by making a guess about a good solution, then
testing it. All three machine learning algoriihms above use trial and error
to refine their own structures, producing the configuration of neurons,

chains, and trees that lets them best solve the problem. The simplest meth-

ods oftrial and error are those in which you always travel in the direction
of improvement - often called hill climbing if you're trying to maximize a

number (say, the number of points collected during a game of Super Mario
Bros.) or gradient descent if you're trying to minimize a number (like the
number of escaped cockroaches). But this simple process of getting closer

to your goal doesn't always yield the best results. To visualize the pitfalls of
simple hill climbing, imagine you're somewhere on a mountain (in deep

fog) and trying to find its highest point.

Best solution !

Mediocne
solution !

I

If you use a simple hill-climbing algorithm, you'll head uphill no matter

what. But depending on where you start, you might end up stopping at the

Global maximum Local maximum

oh no

a How does lt actually learn? 93

lowest peak - a local maximum - rather than the highest peak, the

global maximum.

So there are more complex methods of trial and error designed to force

you to try out more parts of the mountain, maybe doing a few test hikes in
a few different directions before deciding where the most promising areas

are. With those strategies, you might end up exploring the mountain more

efficiently.

In machine learning terms, the mountain is called your search space -
somewhere in that space is your goal (that is, somewhere on the mountain

is the peak), and you're trying to find it. Some search spaces are convex,

meaning that a basic hill-climbing algorithm will find you the peak each

time. Other search spaces are much more annoying. The worst are the
so-called needle-in-the-haystack problems, in which you might have

very little clue how close you are to the best solution until the moment you

stumble upon it. Searching for prime numbers is an example of a needle-in-

the-haystack problem.

The search space of a machine learning algorithm could be anything.
For example, the search space could be the shapes ofparts that make up a

Convex Need1e in a haystack

yay



How does lt actually learn? 95

fork, and we want to design a robot that can direct people to take one hall-

way ot the other.

Fancy AI

The first thing we do is come up with the bits that the evolutionary

algorithm can vary, deciding what about our robot we want to be constant

and what the algorithm is free to play with. We could make these variable

elements very limited, with a fixed body design, and just allow the program

to change the way the robot moves around. Or we could allow the algo-

rithm to build a body design completely from scratch, starting from ran-

dom blobs. Let's say that the owners of this building are insisting on a

humanlike robot design for sci-fi-aesthetic reasons. No messy jumble of

crawling blocks (which is what an evolutionary algorithm's creatures tend

to look like, given absolute freedom). Within a basic humanlike form,

there's still a lot we could vary, but let's keep it simple and say that the

algorithm will be allowed to vary the size and shape of a few basic body

parts, with each one having a simple range of motion. In evolutionary

terms, this is the robot's genome.

Robot Genome

,",,:""::\.
I arm unit

<r' leg unit

Rfoot unit

Body part dimensions:
Head unit: length, width, height
Body unit: length, width, height

Behaviors:
Default behavion
When hunan present
l,,lhen human moves left
When hunan moves right

94 . You Look Llke a Thlng and I Love You

walking robot. Or it could be the set of possible weights of a neural ns1-

work, and the "peak" is the weights that help you identify fingerprints q1

faces. Or the search space could be the set of possible configurations of a

random forest algorithm, and your goal is to find a configuration that's

good at predicting a customer's favorite books-or whether the cock-

roach factory should be evacuated.

As we learned above, a basic search algorithm like hill climbing or gradi-

ent descent might not get you very far ifthe search space ofpossible neural

net configurations is not very convex. So machine learning researchers

sometimes turn to other, more complex trial-and-error methods.

One of these strategies takes its inspiration from the process of evolu-

tion. It makes a lot of sense to imitate evolution - after all, what is evolu-

tion if not a generational process of "guess and check"? If a creature is

different from its neighbors in some way that makes it more likely to sur-

vive and therefore reproduce, then it will be able to pass its useful traits on

to the next generation. A fish that can swim a tiny bit faster than other

individuals of its species may be more likely to escape predators, and after

a few generations of this, its fast-swimming offspring may be a bit more

common than the descendants of slower-swimming fish. And evolution is a

powerful, powerful process-one that has solved countless locomotion

and information-processing problems, figured out how to extract food

from sunlight and from hydrothermal vents, and figured out how to glow,

fly, and hide from predators by looking like bird dung.

In evolutionary algorithms, each potential solution is like an organism.

In each generation, the most successful solutions survive to reproduce,

mutating or mating with other solutions to produce different-and, one

hopes, better - children.

If you've ever struggled to solve a complex problem, it might be mind-

boggling to think of each potential solution as a living being-eating,
mating, whatever. But let's think about it in concrete terms. Let's say we're

trying to solve a crowd-control problem: we have a hallway that splits into a



96 . You Look Llke a Thlng and I Love You

The next thing we need to do is define the problem we're trying to solve

in such a way that there's a single number we can optimize. In evolutionary
terms, this number is the fitness function: a single number that will
describe how fit an individual robot is for our task. Since we're trying to
build a robot that can direct humans down ohe hallway or the other, let's

say that we're trying to minimize the number of humans that take the left-
hand fork. The closer that number is to zero, the higher the fitness.

We'll also need a simulation, because there's no way we're building
thousands of robots to order or hiring people to walk down a hall thou-
sands of times. (Not using real humans is also a safety consideration - for
reasons that will be clear later.) So let's say it's a simulated hall in a world
with simulated gravity and friction and other simulated physics. And of
course we need simulated people with simulated behaviors, including
walking, lines of sight, crowding, and various phobias, motivations, and
levels of cooperativeness. The simulation itself is a really hard problem, so

Iet's just say we've solved it already. (Note: in actual machine learning, it's
never this easy.)

One handy way of getting a ready-made simulation that can train an Al is

to use video games. That's partly why there are so many researchers

training Als to play Super Mario Bros. or old Atari games-these old

video games are small, quick-to-run programs that can test various

problem-solving skills. Just like human video-game players, though, Als

tend to find and exploit bugs in the games. More about this in chapter 5.

We let the algorithm randomly create our first generation of robots.

They're... very random. A typical generation produces hundreds of robots,

each with a different body design.

How does lt actually tearn? . 97

Then we test each robot individually in our simulated hallway. They

don't do well. People walk right past them as they flop on the ground and

flail ineffectually. Maybe one of them falls a bit more to the left than the

others and blocks that hallway slightly, and a few of the more timid humans

decide to take the right hallway instead. It scores slightly better than the

other robots.

Now it's time to build the next generation of robots. First, we'll choose

which robots are going to survive to reproduce. We could save just the very

best robot, but that would make the population pretty uniform, and we

wouldn't get to try out some other robot designs that might end up being

better if evolution gets a chance to tweak them. So we'll save some of the

best robots and throw out the rest.



How does lt actuatly learn? . 99

After many more generations of robots, some distinct crowd-control

strategies start to emerge. Once the robots learn to stand up, the original

"fall to the left and be kinda in the way" strategy has evolved into a "stand

in the left hallway and be even more annoying" strategy. Another strategy

also emerges - the "point vigorously to the right" strategy. But none of the

strategies is perfectly solving our problem yet: each robot is still letting

plenty of people leak into the left hallway.

After many more generations, a robot emerges that is very good at pre-

venting people from entering the left hallway. Unfortunately, by a stroke of

bad luck, it just so happens that the solution it found was "murder every-

one." Technically that solution works because all we told it to do was mini-

mize the number of people entering the left hallway.

v'
Because of a problem with our fitness function, evolution directed the

algorithm toward a solution that we hadn't anticipated. Unfortunate short-

cuts happen in machine learning all the time, although not usually this

dramatically. (Fortunately for us, in real life, "kill all humans" is usually

very impractical. Don't give autonomous algorithms deadly weapons is the

message here.) Still, this is why we used simulated humans rather than real

humans in our thought experiment.

We'll have to start over again, this time with a fitness function that,

rather than minimizing the number of humans in the left-hand hallway,

maximizes the number of humans who take the right-hand hallway.

Actually, we can take a (somewhat gory) shortcut and just change the

fitness function rather than completely starting over. After all, our robots

98 . You Look Llke a Thlng and I Love You

Next, we have lots of choices about how the surviving robots are going
to reproduce. They can't simply make identical copies of themselves,

because we want them to be evolving toward something better. One option
we have is mutation: pick a random robot and randomly vary something

about it.

Mutation

+

Another option we might decide to use is crossover: two robots pro-
duce offspring that are random combinations ofthe two parents.

+ EE]

We also have to decide how many offspring each robot can have (should

the most successful robots have the most offspring?), which robots can

cross with which other robots (or if we use crossover at all), and whether
we're going to replace all the dead robots with offspring or with a few ran-

domly generated robots. Tweaking all these options is a big part of build-
ing an evolutionary algorithm, and sometimes it's hard to guess which
options - which hyperparamsfsls 

- are going to work best.

Once we've built the new generation of robots, the cycle begins again as

we test their crowd-controlling abilities in the simulation. More of them
are now flopping over to the left because they're descended from that first
marginally successful robot.



How does lt actually learn? . 101

ingly in the way. (Falling down is pretty easy to do, so if an evolved robot

can solve a problem by falling down, it will tend to do that.) Through that

path we may arrive at a robot that solves the problem perfectly by causing

100 percent of humans to enter the right-hand hallway (murdering none

ofthem in the process). The robot looks like this:

Yes, we have evolved: a door.

That's the other thing about AI. It can sometimes be a needlessly com-

plicated substitute for a commonsense understanding of the problem.

Evolutionary algorithms are used to evolve all kinds of designs, not just

robots. Car bumpers that dissipate force when they crumple, proteins that

bind to other medically useful proteins, flywheels that spin just so - these

are all problems that people have used evolutionary algorithms to solve.

The algorithm doesn't have to stick to a genome that describes a physical

object, either. We could have a car or bicycle with a fixed design and a con-

trol program that evolves. I mentioned earlier that the genome can even be

the weights of a neural network or the arrangement of a decision tree.

Coo(|et

100 . You Look Llke a Thtng and I Love You

have learned many useful skills besides murdering people. They've learned
to stand, detect people, and move their arms in a scary manner. Once our
fitness function changes to maximizing the number of survivors who enter
the right-hand hallway, the robots should quickly learn to forsake their
murdering ways. (Recall that this strategy of reusing a solution from a dif-
ferent but related problem is called transfer learning.)

So we start with the group of murdering robots and sneakily swap the
fitness function on them. Suddenly, murdering isn't working very well at
all, and they don't know why. In fact, the robot that was the worst at mur-
dering is now at the top of the heap, because some of its screaming victims
managed to escape down the right-hand hallway. Over the next few gener-

ations, the robots quickly become ever worse at murdering.

7f

Eventually, maybe they only look like they might want to murder you,

which would scare most humans into entering the right-hand hallway. By

starting with a population of murderbots, we do restrict the path that evo-

lution is likely to take. Had we started over instead, we might have evolved

robots that stood at the end ofthe right-hand hallway and beckoned peo-
ple or even robots whose hands evolved into signs that said FREE cooKrES.

(The "free cookies" robot would be hard to evolve, though, because getting
the sign merely partially right wouldn't work at all, and it would be hard to
reward a solution that was only getting close. In other words, it's a

needle-in-the-haystack solution.)

All murderbots aside, the most likely path that evolution would have

taken is the "fall down and be in the way" robot getting ever more annoy-

HUMANS

ONLY



show the same horse in the same pose (maybe we're obsessed with that

particular horse), the GAN will learn more quickly than if we give it a huge

variety of colors and angles and lighting conditions. We can also simplify

things by using a plain, consistent background. Otherwise the GAN will

spend a long time trying to learn when and how to draw fences, grass, and

parades. Most of the GANs that can generate photorealistic faces, flowers,

and foods were given very limited, consistent datasets-pictures of just

cat faces, for example, or bowls of ramen photographed only from the top.

A GAN trained just on photos of tulip heads may produce very convincing

iulips but will have no idea about other kinds of flowers or even any con-

cept that tulips have leaves or bulbs. A GAN that can generate photorealis-

tic human head shots won't know what's below the neck, what's on the back

ofthe head, or even that human eyes can close. So this is all to say that if
we're going to make a horse-generating GAN, we'll have better success if we

make its world a very simple one and only give it pictures of horses photo-

graphed from the side against a plain white background. (Conveniently,

this is also about the extent of my drawing ability.)

Now that we have our dataset (or, in our case, now that we've imagined

one), we're ready to start training the two parts of the GAN, the generator

and the discriminator. We want the generator to look at our set of horse

pictures and figure out some rules that will let it make pictures similar to

them. Technically what we are asking the generator to do is warp random

noise into pictures of horses -that way, we can get it to generate not just

one single horse picture but also a different horse for every random noise

pattern.

How does lt actually learn? 103a

fy:i.e/ , / I
./i ,. ,, lrl ,t-l//- / .

r''"^-"-"J 
t</

// \/ , ,t 
'lf\"t I li---'-'i.. ii '.

Ji,ii ;it;i::

102 n You Look Llke a Thlng and I Love You

Different kinds of machine learning algorithms are often combined like
this, each playing to its strength.

When we consider the huge array of life that has arisen on our planet
via evolution, we get an idea of the magnitude of possibility that's available

to us by using virtual evolution at a massively accelerated speed. ]ust as

real-life evolution has managed to produce wonderfully complex creatures

and allow them to take advantage of the weirdest, most specific food
sources, evolutionary algorithms continue to surprise and delight us with
their ingenuity, Of course, sometimes evolutionary algorithms can be a
little too creative - as we'll see in chapter 5.

GENERATIVE ADVERSARIAL NETWORKS IGANSI

AIs can do amazing things with images, turning a summer scene into a

winter one, generating faces of imaginary people, or changing a photo of
someone's cat into a cubist painting. These showy image-generating,

image-remixing, and image-filtering tools are usually the work of GANs
(generative adversarial networks). They're a subvariety of neural net-
works, but they deserve their own mention. Unlike the other kinds of
machine learning in this chapter, GANs haven't been around very long-
they were only introduced by Ian Goodfellow and other Universit6 de

Montr€al researchers in 2OI4.1o

The key thing about GANs is they're really two algorithms in one -two
adversaries that learn by testing each other. One, the generator, tries to
imitate the input dataset. The other, the discriminator, tries to tell the
difference between the generator's imitation and the real thing.

To see why this is a helpful way of training an image generator, let's go

through a hypothetical example. Suppose we want to train a GAN to gen-

erate images of horses.

The first thing we'll need is lots of example pictures of horses. If they all



104 o You Look Llke a Thlng and I Love You

At the beginning of the training, though, the generator hasn't learned
any rules about drawing horses. It starts with our random noise and does

something random to it. As far as it knows, that is how you draw a horse.

How can we give the generator useful feedback on its terrible draw-

ings? Since this is an algorithm, it needs feedback in the form of a number,

some kind of quantitative rating that the generator can work on improving.
One useful metric would be the percentage of instances in which it makes

a drawing that's so good that it looks just like a real horse. A human could
easily judge this-we're pretty good at telling the difference between a

smear of fur and a horse. But the training process is going to require many

thousands of drawings, so it's impractical to have a human judge rate them
all. And a human judge would be too harsh at this stage -they would look
at two ofthe generator's scribbles and rate them both as "not horse," even

if one of them is actually ever so imperceptibly more horselike than the
other. If we give the generator feedback on how often it manages to fool a

human into thinking one of its drawings is real, then it will never know if
it's making progress because it will never fool the human.

This is where the discriminator comes in. The discriminator's job is to
look at the drawings and decide if they're real horses from the training set.

At the beginning of training, the discriminator is just about as awful at its
job as the generator is: it can barely tell the difference between the genera-

tor's scribbles and the real thing. The generator's almost imperceptibly
horselike scribbles might actually succeed in fooling the discriminator.

r

How does lt actually learn? a 105

Through trial and error, both the generator and the discriminator get

better.

The GAN is, in a way, using its generator and discriminator to perform a

Turing test in which it is both judge and contestant. The hope is that by

the time training is over, it's generating horses that would fool a human

judge as well.

/ti'c"fim;Io.il

hmm

hmmm

fpiscii'n-i*Tda

hmmmmm

5C

hA
00

s c rimi



How does lt actually learn? a 107

generate paintings for a project called lt's Not ReaIIy You.12 One algorithm

was trained to generate abstract art, and another algorithm's job was to

transform the first algorithm's artwork into various painterly styles. Finally,

the artist used an image recognition algorithm to give the images titles such

as Colorful Salad, Train Cake, and Pizza Sitting on a Rock. The final artwork was

a multialgorithm collaboration planned and orchestrated by the artist.

Sometimes the algorithms are even more tightly integrated, using mul-

tiple functions at once without human intervention. For example, research-

ers David Ha and fiirgen Schmidhuber used evolution to train an algorithm

inspired by the human brain to play one level of the computer game

Doom.13 The algorithm consisted of three algorithms working together. A

vision model was in charge of perceiving what was going on in the game -
were there fireballs in view? Were there walls nearby? It transformed the

2-D image of pixels into the features it had decided were important to keep

track of. The second model, a memory model, was in charge of trying to
predict what would happen next. lust as the text-generating RNNs in this

book look at past history to predict what letter or word is likely to come

next, the memory model was an RNN that looked at previous moments in
the game and tried to predict what would happen next. If there had been a

fireball moving to the left a few moments earlier, it's probably going to still
be there in the next image, just a bit farther to the left. If the fireball had

G # \
I

I

I have detected
I predict the
fineball will
continue to
get biggen.

MM! Dodge leftlvarious things

l--ImoE-l 
^o'r,tdils-7

106 . You Look Ltke a Thlng and I Love You

Sometimes people will design GANs that don't try to match the input
dataset exactly but instead try to make something "similar but different."

For example, some researchers designed a GAN to produce abstract art,

but they wanted art that wasn't a boring knockoff of the art in the training
data. They set up the discriminator to judge whether the art was like the
training data yet not identifiable as belonging to any particular category.

With these two somewhat contradictory goals, the GAN managed to strad-

dle the line between conformity and innovation.ll And consequently, its

images were popular-human judges even rated the GAN's images more

highly tha4 human-painted images.

MIXING, MATCHING, AND WORKING TOGETHER

We learned that GANs work by combining two algorithms - one that gen-

erates images and one that classifies images - to reach a goal.

In fact, a lot of AIs are made of combinations of other, more specialized

machine learning algorithms.

Microsoft's Seeing AI app, for example, is designed for people with
vision impairments. Depending on which "channel" a user selects, the app

can do things like

. recognize what's in a scene and describe it aloud,

. read text held up to a smartphone's camera,

. read denominations of currency,

. identify people and their emotions, and
o locate and scan bar codes.

Each one of these functions-including its crucial text-to-speech

function - is likely powered by an individually trained AI.

Artist Gregory Chatonsky used three machine learning algorithms to



108 . You Look Llke a Thlng and I Love You

been getting bigger, it's probably going to continue to get bigger (or it may

hit the player and cause a huge explosion). Finally, the third algorithm was

the controller, whose job was to decide what actions to take. Should it
dodge to the left to avoid being hit by the fireball? Maybe that would be q

good idea.

So the three parts worked together to see fireballs, realize they were

approaching, and dodge out ofthe way. The researchers chose each subal-

gorithm's form so that it would be optimized for its specific task. This

makes sense, since we learned in chapter 2 that machine learning algo-

rithms do best when they have a very narrow task to work on. Choosing the
correct form for a machine learning algorithm, or breaking a problem into
tasks for subalgorithms, is a key way programmers can design for success.

In the next chapter, we'll look at more ways that AIs can be designed for
SuCcesS 

- 
61 n6f.


