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a b s t r a c t

Reinforcement (trial-and-error) learning in animals is driven by a multitude of processes. Most animals
have evolved several sophisticated systems of ‘extrinsic motivations’ (EMs) that guide them to acquire
behaviours allowing them to maintain their bodies, defend against threat, and reproduce. Animals
have also evolved various systems of ‘intrinsic motivations’ (IMs) that allow them to acquire actions
in the absence of extrinsic rewards. These actions are used later to pursue such rewards when they
become available. Intrinsic motivations have been studied in Psychology for many decades and their
biological substrates are now being elucidated by neuroscientists. In the last two decades, investigators in
computationalmodelling, robotics andmachine learning have proposed variousmechanisms that capture
certain aspects of IMs. However, we still lack models of IMs that attempt to integrate all key aspects of
intrinsically motivated learning and behaviour while taking into account the relevant neurobiological
constraints. This paper proposes a bio-constrained system-level model that contributes a major step
towards this integration. The model focusses on three processes related to IMs and on the neural
mechanisms underlying them: (a) the acquisition of action–outcome associations (internal models of
the agent-environment interaction) driven by phasic dopamine signals caused by sudden, unexpected
changes in the environment; (b) the transient focussing of visual gaze and actions on salient portions of
the environment; (c) the subsequent recall of actions to pursue extrinsic rewards based on goal-directed
reactivation of the representations of their outcomes. The tests of themodel, including a series of selective
lesions, show how the focussing processes lead to a faster learning of action–outcome associations, and
how these associations can be recruited for accomplishing goal-directed behaviours. The model, together
with the background knowledge reviewed in the paper, represents a framework that can be used to
guide the design and interpretation of empirical experiments on IMs, and to computationally validate
and further develop theories on them.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Most organisms are endowedwith complex systems of extrinsic
motivations (EMs) that drive the execution and the acquisition
of behaviours that serve homeostatic regulation. This enhances
their biological fitness by allowing them, for example, to escape
predators, seek food and water, and reproduce. One of the
hallmarks ofmammals, and in particular primates, is their capacity
to learn on the basis of intrinsic motivations (IMs). The notion
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of IM was initially developed because the classical theories of
instrumental learning and drives (e.g., Hull, 1943; Skinner, 1938)
fell short in their ability to explain some empirical findings;
for example why monkeys spontaneously engage in puzzles
(Harlow, 1950), or why rats can be instrumentally trained with
an apparently neutral stimulus (such as the sudden onset of a
light) to perform an action without an extrinsic reward (e.g., food)
(Kish, 1955). Berlyne (1966) systematically studied the properties
of certain stimuli, traditionally not considered to be reinforcing,
that can trigger spontaneous exploration: such stimuli tend to
be complex, unexpected, or in general ‘surprising’. Later, other
researchers, giving a stronger emphasis on the relation between
IMs and action, proposed that an important aspect of these
motivations is the capacity of animals to impact the world with
their own actions (e.g., based on the concept of ‘‘effectance’’,White,
1959).
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Some recent computationally grounded work has proposed
a theoretical systematisation of IMs. In particular, Oudeyer and
Kaplan (2007) have clarified the existence of two classes of
computational mechanisms to implement IMs; those based on
measures of knowledge on stimuli (predictability and novelty)
lead to knowledge-based IMs (KB-IMs), whereas those based on
measures of action acquisition lead to competence-based IMs (CB-
IMs). Mirolli and Baldassarre (in press) have clarified how all these
mechanisms serve the ultimate function of action acquisition and
performance, but also that they can do this by implementing
two distinct sub-functions, namely, the acquisition of knowledge
or the acquisition of competence. In this respect, both KB-IMs
and CB-IMs can be used for either sub-function (e.g., as further
discussed in Section 4, the model presented here exploits a KB-
IM mechanism to drive the acquisition of competence). Schembri,
Mirolli, and Baldassarre (2007c) and Singh, Lewis, Barto, and
Sorg (2010) have proposed evolutionary computational models
to explain the adaptive origin of IMs and their close relation to
EM. Related to this, Baldassarre (2011) has proposed that IMs
have the adaptive function of driving the acquisition of actions
when rewards produced by EM (e.g., related to food and sex)
are temporally distal, or would require the acquisition of overly
complex behaviours. At a later stage, the actions acquired through
IMs can then be readily recalled or assembled to achieve extrinsic
rewards when these become available. Further, related to the
model proposed here, Baldassarre (2011) has started to distinguish
EM and IMs on the basis of the differences between the brain
mechanisms underlying them.

Recently, neuroscience has started to propose theories related
to IMs. For example, it has been shownhowhippocampus responds
to novel stimuli (or novel spatio-temporal relations between
familiar stimuli) thereby generating a dopaminergic learning
signal that might drive the formation of new memories (Kumaran
& Maguire, 2007; Lisman & Grace, 2005). Research on locus
coeruleus has shown how this nucleus produces noradrenaline
when environmental predictions are violated, and how this might
drive learning processes within its target structures (Sara, 2009;
Sara, Vankov, & Hervé, 1994; cf. Yu & Dayan, 2003, for a related
model). Dopamine (DA) has also been shown to be related to
IMs, for example novel stimuli cause its release (Kakade & Dayan,
2002; Schultz, 1998 show how a popular reinforcement-learning
algorithm – TD(0), see Sutton & Barto, 1998 – captures this data if
enhanced with ‘exploration bonuses’, transient rewards or higher
evaluations for novel stimuli).

One of the most comprehensive neuroscientific theories
relating DA and IMs has been proposed by Redgrave and Gurney
(2006) and Redgrave, Vautrelle, and Reynolds (2011). This theory
highlights some important mechanisms underlying IMs that are
pivotal for the model proposed here. Key structures in this
theory are: the basal ganglia (BG)—a group of subcortical nuclei
important for action selection and reinforcement learning in
operant conditioning; the striatum (Str)—the major input to BG;
superior colliculus (SC)—a subcortical nucleus receiving input
from the retina and important for controlling eye movements.
According to Redgrave and Gurney (2006) sudden unexpected
events activate the superior colliculus that, in turn, triggers phasic
responses in midbrain dopamine neurons, with bursts whose
amplitude diminishes as the stimulus becomes familiar. These
dopamine neurons innervate striatum, and the phasic release
of dopamine here causes plasticity which facilitates cortico-
striatal transmission. This results in the most recently selected
actions being more likely to be selected again, so that there
is a tendency to repeat the actions that caused the phasic
event. This phenomenon is referred to as repetition-bias and we
conceive of it as an example of IM since the external stimulus
triggering learning (e.g. a sudden light onset) is not extrinsically
rewarding. Bolado-Gomez, Chambers, and Gurney (2009) have
shown how a biologically plausible learning rule could produce
repetition bias in a behaving agent, and Gurney, Humphries,
and Redgrave (2009) have demonstrated that the learning rules
required for action acquisition are consistent with recent in vitro
data. The repetition of the action and its consequences causes
representations of the action and its outcome to be repeatedly
presented at brain structures (including cortical areas) which can
form associations between them. In this way, internal models of
the action–outcome contingencies can be stored. Once acquired on
the basis of IMs, these models allow actions potentially leading
to specific outcomes to be recalled through the activation of the
neural representations of such outcomes, thereby allowing goal-
directed behaviour (hence we will refer to internally re-activated
neural representations of desired outcomes as goals). This theory
has recently been articulated in more detail by Gurney, Lepora,
Shah, Koene, and Redgrave (in press) where the notions of action
selection, prediction errors, internal models, etc., have been given
formal ontological definitions.

The contributions reviewed above represent important ad-
vancements for our understanding of IMs and their relations to
EM. However, we still lack a complete, fully specified, systems-
level model which integrates all aspects of the theory of Redgrave
and Gurney (2006), including the learning of internal model as-
sociations and their subsequent recall in goal-directed behaviour.
This work proposes a model that fills this gap in our knowledge.
In particular, the model investigates the following aspects of be-
haviour and their possible underlying brain mechanisms. First, the
role of repetition bias, induced by phasic and unexpected envi-
ronmental changes, and its ability to facilitate the acquisition of
action–outcome associations in cortico-cortical neural pathways
involving the prefrontal, motor, and parietal cortex. Second, the
later recall of actions directed to pursue biologically valuable ef-
fects based on the activation of the representations of desired out-
comes (goals). Notice that although most of these aspects have
been empirically investigated and theoretically discussed in pre-
vious works, the model presented here is the first to: (a) specify all
of them to a detail that allows their computational implementa-
tion; (b) integrate them into a complete, autonomously function-
ing system; (c) do so while obeying biological constraints at the
macro-architectural (system) level.

In order to accommodate these mechanisms, the architectural
and functional scope of the model is necessarily broad. The model
was therefore developed and constrained with biological data at
the system-level, that is at the level of the functions played by
the various brain nuclei and subsystems, while deferring to future
work the goal of introducing stronger constraints at the micro-
circuit and physiological level. Further, some computations which
are more tangential to the overall hypothesis (e.g., the details of
oculomotor control) are subsumed into simple functional elements
rather than implemented in a biologically plausible way.

The rest of the paper is organised as follows. Section 2.1
illustrates the task used to test the model: this task is similar
to a behavioural experiment on IMs with monkeys and children
(Taffoni et al., in press). Section 2.2 gives an overview of the model
components and then describes how they work at a functional
level during the learning and test phases. Section 2.3 describes
in more detail the biological constraints used to design the
model. Section 2.4 presents the computational mechanisms used
to implement the model in detail. Section 3 presents the results of
tests of themodel, both in its complete, functioning form, and after
several lesions designed to dissect the correspondence between
mechanisms and functions: the results of these experiments
represent predictions of the model that might be tested in future
experiments. Finally, Section 4 discusses the results and the key
features of the model both from a biological and a computational
perspective.
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Fig. 1. The experimental apparatus that was used with monkeys (left) and children (right) to run the target experiments. The apparatus is formed by a working plane
(1) and a feedback plane (2) (3: embedded camera used for monitoring the monkeys). The working plane (4) contains mechatronic objects that can be manipulated (here
simple buttons that can be pressed). The feedback plane contains lights, loudspeakers, and boxes that can open automatically: these can produce outcomes caused by actions
executed on the mechatronic objects.
The paper’s remit is extensive as it aims to: (i) integrate
biological and computational aspects of IM; (ii) present a specific
model of IM; (iii) present a biological framework to carry out
other investigations on IMs. For this reason, to meet the reader’s
interests, several sections are readable independently of others.
The reader with focused interests can therefore read a sub-
set of the paper without loss of narrative. In particular, the
reader interested in the biological aspects related to IMs can
read the model overview (Section 2.2), the biological framework
(Section 2.3), and then jump to the discussion of the biological
issues (Section 4.1). The reader interested in the computational
details of the model might instead browse the overview of the
model (Section 2.2), read thoroughly its computational details
(Section 2.4) and the results (Section 3), and then access the
discussion of the computational aspects (Section 4.2). Finally, the
reader interested only in the computational results of the model
might only read the model overview (Section 2.2) and the results
(Section 3).

2. Methods

2.1. The target behavioural task

The task is an abstraction of an experiment described in Taffoni
et al. (2012) and Taffoni et al. (in press) specifically designed to
test theories on IMs, andmakes an ideal test bed for themodel. The
experiment is being runwith bothmonkeys and children using the
apparatus shown in Fig. 1. The apparatus is formed by a working
plane having three buttons that can be pressed, and a vertical plane
in which there are small embedded boxes that can be opened with
the buttons and can so deliver a reward. In this plane there are also
three sets of lights and a loudspeaker for additional feedback.

The experiment is divided into two phases: a learning phase
and a test phase. There are control and experimental groups of
participants. In the learning phase, if a participant of the control
group presses a certain button, a certain set of lights and sounds
are turned on. If a participant of the experimental group presses
a button, the board produces the same effects with the additional
opening of a corresponding box. In this phase, no extrinsic reward
is given and the participant should be driven to explore the board
by IMs.

In the test phase, which is identical for the control and
experimental group, a reward is set inside one of the three
boxes. For monkeys, this was a peanut, for children a sticker (a
reward token used extensively by developmental psychologists).
The reward is visible to the participants as the boxes have a
transparent cover, so it should motivate them to recall the action
required to open the box acquired during the learning phase.
During the test phase, the time taken for the retrieval of the
reward is measured. The results of pilot experiments with children
(Taffoni et al., 2012, Taffoni et al., in press) indicate that subjects
in the experimental group tend to retrieve the rewards faster
than the control group. These preliminary results can be explained
by the experimental hypothesis under which the participants’
exploration during the learning phase allows them to acquire the
action–outcome associations (press button x ↔ box y opens)
required in the subsequent test phase to retrieve the reward.

This experiment is relevant for the investigation of IMs for
the following reasons. The experiment does not manipulate IMs.
Indeed, IMs are present in both the control and experimental
groups in the same way. The idea of the experiment is instead
to demonstrate that IMs allow the agents to learn things that
can be later exploited to gain extrinsically rewarded outcomes. To
this purpose, the experiment design assures that: (a) In the first
training phase of the experiment there are clearly no EMs involved,
so any knowledge or competence acquisition is based on IMs; (b) In
this phase, the experiment manipulated what could be learned by
the two groups (opening of the box or not); (c) In the second test
phase the knowledge/competence eventually acquired in the first
phase can be exploited to improve performance. The hypothesis
of the experiment was that the second phase would have shown
a different performance of the control and experimental groups,
so supporting the idea that IMs can indeed have the function of
acquiring knowledge/competence that can be later exploited for
better achieving extrinsic rewards.

Wenowdescribe the simulated schedule used to test themodel.
During the learning phase, which lasted 60 min of simulated time
(one simulation step lasted 0.05 s), the model freely explored
the board and learned action–outcome associations based on IMs.
During the test phase, lasting 6 min, the model was tested to see if
it was capable of recalling the required actions on the basis of the
activation of its internal representations of the action–outcomes. In
particular, each outcome representation (box-open) was activated
for 2min and themodel had tomake repeated sequences of actions
with this goal in place. If a box opened it stayed open for 2 s before
‘closing’. The model did not undergo any reset or re-initialisation.



G. Baldassarre et al. / Neural Networks 41 (2013) 168–187 171
Fig. 2. Functional representation of the model showing its main components and their macro-circuit connectivity. Arrow heads represent excitatory connections,
whereas circle-heads represent inhibitory connections. Dashed lines represent the dopamine learning signals. Boxes with a bold border are phenomenologically modelled
(‘hardwired’) components. See Table 2 for the acronyms used in the figure.
The inputs and actions of the model were encoded at a rather
coarse level of granularity given the focus of this research on high-
level aspects of cognition. In particular in the model the actions
representedwholemovement sequences such as ‘look at button x’,
‘look at box x’, ‘press x’, etc. This choice is in line with the empirical
experiments with monkeys and children which clearly indicate
that, when these participants face the board experiment, they
already possess a rich repertoire of orienting and manipulative
actions acquired in previous life experiences. In particular, they
probe the board by executing quite complex actions (such as the
ones mentioned above) and seem to perform a kind of ‘motor-
babbling’ (von Hofsten, 1982) albeit at the complete action level
rather than at the fine movement level. The inputs to the model
were chosen at a similar coarse granularity and so they represented
entire objects such as the buttons and boxes, or the context
corresponding to the whole experiment.

2.2. Overview of the model

Fig. 2 shows the components of the model architecture,
highlighting their main function1 and their possible biological
correspondents. A more detailed illustration of the architecture
is given in Fig. 3, and a fuller account of its biological basis in
Section 2.3; a list of acronyms referring to brain areas is given in
Table 2 in the Appendix. The core of the model is formed by three
coupled components, corresponding to three BG-cortical loops:
one loop selects the arm actions (‘arm loop’), one selects the eye

1 Note that we describe each component of the model as implementing a ‘main
function’ for ease of explanation: in fact, each component implements specific
computational processes and its function emerges from these processes and the
interaction of the component with other components of the model.
gaze (‘oculomotor loop’), and one selects the goals to pursue during
the test phase (‘goal loop’).

The oculomotor loop has a constant input representing the
overall context of being situated in the experiment, and can
select a saccade to a point from among six possible spatial
locations—the three buttons and the three boxes. The arm loop
receives six different possible input patterns corresponding to
the possible perceived objects—again the three buttons and three
boxes. On this basis the arm loop can select among three possible
actions: a ‘reach to and press the looked-at object’ action, that
when performed on a button opens the corresponding box, and
two inconsequential (‘dummy’) actions introduced to test the
learning capabilities of the arm loop (e.g. ‘reach and point at, but
don’t press’ and ‘reach and wave’—the precise definitions are not
important). During the learning phase, when an action causes a
box to open, a representation of this outcome occurs within the
goal loop, allowing the formation of associations between such
representations and the representations of the actions within the
arm and oculomotor loops. During the test phase, the goal loop
receives an external (‘hardwired’) input that abstracts the values
assigned to the different possible outcomes by sub-cortical brain
systems: this causes the selection of one particular goal.

Another key component of the model is the SC that is
activated by sudden unexpected luminance changes and which
can, as a consequence, generate a phasic response in midbrain
dopaminergic areas (Comoli et al., 2003). This signal drives a
learning process involving striatal afferent connections of the arm
and oculomotor loop. It is known that the amplitude of the phasic
dopamine signal declines as the stimulus becomes predicted (see
for example, Schultz, 2010). Recently Shah and Gurney (2011)
have shown that, computationally, this phenomenon can prevent
unlearning and can, under some circumstances, enable an optimal
outcome without a specific cost function. Here, we do not model
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Fig. 3. Detailed architecture of the model. Boxes implemented as rate-coded neural populations are shown with these populations as neural units (indicated by small
circles). Boxes with text inside represent components whose function is implemented abstractly (‘hardwired’). Other details are described in the figure legend and in the
text. See Table 2 in the Appendix for the anatomical acronyms.
the prediction mechanism as such, but simply model the decay, or
inhibition, of the dopamine response phenomenologically. Thus,
we force the amplitude of phasic dopamine to decline when a
salient event happening at a specific place, for example the opening
of a box, is experienced several times; we refer to this mechanism
as the ‘dopamine inhibitor’. As further explained below, the
function of this mechanism is to first focus the exploration and
learning resources on a certain portion of the environment (when
DA bursts are high) and then to direct them to other portions of the
environment (when DA bursts are low/null).

Finally,wemodel the initiation of reflexive saccades in response
to phasic, peripheral stimuli. Such a response is required in order
to cause saccades to phasic events such as the opening of one
of the boxes. Anatomically, this process involves a subcortical
loop formed by BG and SC (a full model of integrated subcortical
and cortical gaze control has been recently given by Cope &
Gurney, 2011). However, the precise mechanisms at work here
are not part of our primary interest and so we model reflexive
saccades phenomenologically by simply overriding the output of
the oculomotor loop when required.

During the learning phase, the model operates as follows. The
oculomotor and arm loops initially select actions in a random
fashion. In particular, the eye foveates one of the six visually salient
positions of the board (three button, three boxes) and the arm
performs one of the three available actions (the ‘reach and press’
action, and the two inconsequential dummy actions). Note that
there are 18 possible combinations of the oculomotor and arm
loop actions. Occasionally, a combination of these will occur which
causes a box to open (looking at a button and reaching/pressing
it). The initially unexpected environmental event of box-opening
activates the SC that causes a phasic DA burst. When such an
event is experienced several times, the DA inhibitor progressively
attenuates the correspondingDA signal. Further, immediately after
the event, the reflexive saccade system operates to drive the
system to foveate to the portion of space where the change took
place (the opening of a box).

The perception of the environmental change, with the conse-
quent DA signal, triggers two learning processes, one involving the
cortex and one involving the striatum. The learning process involv-
ing cortex modifies the connections projecting from the goal loop
to the arm and oculomotor loops. This process is based on a Heb-
bian learning rule involving DA (see Section 2.4) and forms asso-
ciations between the outcome currently activated in the goal loop
(e.g., ‘box x opens’), and the actions just performed, i.e. a combina-
tion of the ‘saccade to button x’ eye action and the ‘reach-and-press
the looked-at object’ arm action encoded respectively in the ocu-
lomotor and arm loops.

In the striatal learning process, phasic DA reaches the striatal
afferent connections of the arm and oculomotor loops and drives
plasticity based on a 3-factor learning rule (Reynolds & Wickens,
2002, see Section 2.4). This results in a strengthening of the
connections between the seen object and the performed action
within the arm loop, and between the ‘context’ and the eye saccade
within the oculomotor loop. In this way the system can learn to
look at a specific portion of space and to select the correct arm
action (‘reach and press’) when it sees a button so as to cause an
interesting change in the environment (‘opening of a box’).

When the DA signal decreases due to the action of the ‘DA
inhibitor’ (subsuming, in our model, a prediction process), the
striatal afferent connection weights undergo a spontaneous decay.
This leads the oculomotor loop to recommence exploration of the
environment, and the arm loop to randomly select other actions
so that the system can discover new unpredicted events that its
actions can cause.

The test phase aims to show how the action–outcome
associations acquired in the intrinsically motivated learning phase
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may be subsequently recruited to allow the system to pursue
rewarding goals (e.g., food). During the test phase we manually
activate each outcome representation encoding a certain box-
opening within the goal loop for a certain time (see Section 2.4)
and record the successful acquisition of the external rewards. If
the system is capable of learning suitable representations of the
possible action–outcome contingencies based on IMs, there should
be a higher rate of box-openings in the experimental group than
in the control group. The mechanism here is such that if suitable
cortico-cortical connections are formed in the learning phase then
when a goal is activated the activity propagates from the goal loop
to the oculomotor and arm loops causing respectively a saccade
towards the button that can open the corresponding box and a
‘reach and press’ action at that button.

2.3. The biology underpinning the model

This section presents the biological constraints that have been
used to select themodel components and their function illustrated
in Fig. 2 and, in some cases, the internal micro-architecture
and functioning illustrated in Section 2.4. In so doing, we will
review the biological evidence that we think is relevant to
investigate the IMphenomena targeted here, and also other related
phenomena in future work. Table 1 summarises the brain sub-
systems relevant for the phenomena investigated here, the main
functions they might implement, and some references used as
sources of this information. Note that not all these constraints
find their way directly into the current model, and in some cases
some biological functions are incorporated in the model at an
abstract, phenomenological level. Working with these multiple
levels of description is a principled methodology if done in such
a way as to preserve representation semantics between the levels
(Gurney, 2009; Gurney, Prescott, Wickens, & Redgrave, 2004).
Notwithstanding this selective use of constraints, we present this
more comprehensive review of the biology as we believe it lays
the foundation for the future development of the model (see also
Section 4).

As mentioned in Section 2.2, the core of the model is formed
by three main components representing three BG-cortical loops:
these loops have the role of selecting arm actions, eye gaze,
and goals. They also implement important reinforcement learning
processes contingent on phasic dopamine (Reynolds & Wickens,
2002). The basal gangia (BG) are a set of sub-cortical nuclei tightly
linked to associative and frontal cortex via re-entrant connections
(Alexander, DeLong, & Strick, 1986; Hikosaka, 1998; Houk, Davids,
& Beiser, 1995; Redgrave et al., 2011). The striatum is the major
input gateway of the BG and cortex sends important efferent
connections to the striatum mainly from layer V. Cortex also
receives afferent connections fromBGvia the thalamus (Th)mainly
within layer IV (Kandel, Schwartz, & Jessell, 2000; Shepherd &
Grillner, 2010). Within BG the signals are processed via a double
inhibition mechanism involving the striatum as a first stage,
and the internal globus pallidus (GPi) and substantia nigra pars
reticulata (SNr) as a second stage (both stages involve GABAergic
efferent connections; see Chevalier & Deniau, 1990).

The striatum and GPi/SNr implement the so-called direct
pathway of BG. The inhibitory action of GPi can also be augmented
by the diffuse excitatory efferent connections it receives from
the subthalamic nucleus (STN), itself receiving input from the
cortex. The cortico-subthalamo-pallidal pathway is sometimes
referred to as the hyperdirect pathway (Nambu, Tokuno, & Takada,
2002). The BG also involve a third indirect circuit, the indirect
pathway, incorporating the external globus pallidus: this pathway
is not considered in the model presented here. The pathways
of BG-cortical loops tend to form partially segregated channels
as their different portions (striatum, GPi/SNr, and STN), and
the thalamic regions to which they project, generally preserve
the topological organisation of the cortex to which they are
connected (Haber, 2003; Romanelli, Esposito, Schaal, & Heit, 2005).
The organisation into channels of the direct pathway (suitably
modulated by the indirect and hyperdirect pathways), has led to
wide agreement that the BG are well suited to select secondary
perceptual representations, actions, and other more complex
cognitive contents when animals face selection problems in these
domains (Houk et al., 1995; Joel, Niv, & Ruppin, 2002; Redgrave,
Prescott, & Gurney, 1999). The selection processes within the BG
might be further strengthened via inhibitory connections internal
to the Th (Crabtree & Isaac, 2002).

The BG are also a key brain structure important for rein-
forcement (trial-and-error) learning processes (Brown, Bullock, &
Grossberg, 1999; Doya, 1999; Houk et al., 1995; Joel et al., 2002).
In particular, the cortical synaptic contacts to striatal neurons have
been shown to undergo LTP and LTDmodulated by dopamine (Cal-
abresi, Picconi, Tozzi, & Filippo, 2007; Reynolds & Wickens, 2002;
Wickens, 2009; Wickens, Reynolds, & Hyland, 2003). An aspect
of these learning processes important for the model is that the
associative striatum is particularly important for task acquisition
and/or performance during early stages of learning, while senso-
rimotor striatum and cortex respond more strongly after it has
become habitual or automatised (see Ashby, Turner, & Horvitz,
2010, for a review). This process is finessed in regards to whether
the habitual action is simple or is composed of a sequence of sim-
pler actions. In the former case, even sensorimotor striatal activ-
ity may cease completely in favour of a higher cortical activation
(e.g. Carelli, Wolske, & West, 1997).

The organisation of BG-cortical loops around partially segre-
gated functional channels also tends to repeat at a higher level of
organisation in terms of the classes of action being selected. Thus,
different BG-cortical loops tend to form whole systems that play
partially distinct functions depending on the functioning and con-
nectivity of the particular cortical area they involve (Haber, 2003;
Yin & Knowlton, 2006). In this respect, the model presented here
involves three BG-corticalmacro loops that perform three different
classes of selections relevant for solving the task:

• Arm loop. In the model, this sensorimotor loop performs the
selection of actions involving the arm. In the brain, the selection
of arm reaching actions involves the dorsolateral portions
of the premotor cortex (PMC) and portions of the posterior
parietal cortex (PC), in particular the parietal reach region
(PRR) (Luppino & Rizzolatti, 2000; Simon, Mangin, Cohen,
Bihan, & Dehaene, 2002; Wise, Boussaoud, Johnson, & Caminiti,
1997). These areas form re-entrant connections with the BG,
in particular with the portion of striatum called putamen (Put)
(Jaeger, Gilman, & Aldridge, 1993; Romanelli et al., 2005).

• Oculomotor loop. In the model, this loop performs the voluntary
control of visual gaze (saccades). In the brain, the selection
of eye movements involves the PC and, in particular, the
lateral intraparietal cortex (LIP). The frontal eye fields (FEF)
in the prefrontal cortex (PFC) are also a key cortical area
for eye control. These areas form re-entrant loops with BG,
in particular the portion of striatum called caudatum (Cau;
Hikosaka, Takikawa, & Kawagoe, 2000).

• Goal loop. In the model, this loop encodes action–outcomes and
performs their selection (goals). In the brain, the selection of
goals strongly relies on PFC (Miller & Cohen, 2001) forming
re-entrant connections with BG, in particular the nucleus
accumbens portion of striatum (NAcc; Haber, 2003; Middleton
& Strick, 2002).

Another key component of the model is the SC that generates
phasic DA signals critical for learning. The SC of mammals is
very sensitive to spatially localised changes in luminance caused,
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Table 1
Key references on the main functions ascribed to the brain components and neural systems forming the model (components in brackets are not explicitly modelled here). A
table of the acronyms can be found in the Appendix.

Brain area Function References

Cortical bottom–up neural streams

(VC → PC → PMC/PFC) Dorsal neural pathway Cisek and Kalaska (2010), Jeannerod (1999), Luppino and Rizzolatti
(2000), Rizzolatti and Matelli (2003) and Simon et al. (2002)

(VC → PRR → PMC) Affordances, arm control Wise et al. (1997)
(VC → LIP → FEF) Voluntary eye control Snyder et al. (2000)
VC → ITC → PFC Object recognition, context Grill-Spector and Malach (2004)

Sub-cortical/cortical top–down neural pathways

(Amg → PFC) Assigns ‘extrinsic’ values to objects and events Wallis (2007)
PFC → PMC/PRR and PFC → FEF/LIP Biases affordance and action selection Fuster (2008), Miller and Cohen (2001) and Yeterian et al. (2011)
VTA → Cortex Dopamine based learning processes Huang et al. (2004) and Otani et al. (2003)

BG-cortical loops

BG ↔ cortex Macro loops, channel organisation, selection of
cognitive contents

Alexander et al. (1986), Ashby et al. (2010), Chevalier and Deniau
(1990), Haber (2003), Redgrave et al. (1999), Romanelli et al. (2005)
and Yin and Knowlton (2006)

Input → Put, Input → Cau Trial-and-error learning, action repetition bias Berridge and Robinson (1998), Berridge et al. (2005) and Redgrave
et al. (2011)

Amg → NAcc Goal-selection based on values Cardinal et al. (2002) and Pennartz et al. (2011)
Put → GPi → Th → PMC/PRR Selection of arm movements Jaeger et al. (1993)
Cau → SNr → Th → FEF/LIP Selection of eye movements Hikosaka et al. (2000)
NAcc → SNr → Th → PFC Selection of goals Haber (2003) and Middleton and Strick (2002)
Cortex → Str Trial-and-error learning, LTP and LTD processes Houk et al. (1995) and Wickens (2009)

Others

SC Generates DA learning signals with sudden
unexpected events

Comoli et al. (2003) and Redgrave and Gurney (2006)

Subcortical eye centers Reflex eye movements Hikosaka et al. (2000)
Inhibitor Progressively inhibits DA Balcita-Pedicino et al. (2011) and Smith et al. (2004)
(Amg) Assigns value to goals Balleine et al. (2003), Cardinal et al. (2002), Mirolli et al. (2010) and

Pitkänen et al. (1997)
(Hip) Responds to novel stimuli and novel

spatial/temporal relations
Kumaran and Maguire (2007) and Lisman and Grace (2005)

(LC) Signals violations of expectations Sara et al. (1994) and Sara (2009)
for example, by the appearance, disappearance, or movement of
elements in the visual scene (Sparks, 1986;Wurtz & Albano, 1980).
In these cases, the SC shows very fast sensory response (latency
of about 40 ms; Jay & Sparks, 1987; Redgrave & Gurney, 2006)
which activates the dopaminergic neurons of the substantia nigra
pars compacta (SNc) and ventral tegmental area (VTA) and causes a
phasic dopamine burst (Comoli et al., 2003; Dommett et al., 2005;
May et al., 2009). The SC also shows a second response (latency
around 200 ms) which causes an orienting gaze shift to the region
of space where the luminance change took place (Jay & Sparks,
1987; Sparks, 1986). FEF, and also LIP, project to SC, allowing the
execution of voluntary eye movements (Hikosaka et al., 2000).

The phasic DA signal reaches, especially via SNc, cortical
afferent terminals in striatum wherein it facilitates plasticity. Our
hypothesis (Redgrave & Gurney, 2006) is that this plasticity could
act to enhance the selection of the just-performed action in a
transient way causing a repetition bias in the selection process for a
transient period of time. This process has been demonstrated using
biologically plausible models of spiking neurons (Gurney et al.,
2009) and in an agent-based setup (Bolado-Gomez et al., 2009).
Repetition bias allows representations of the action, its context,
and its outcome to be repeatedly presented at neural circuits
responsible for forming action–outcome associations thereby
enhancing any Hebbian plasticity which might induce these
associations, possibly involving DA (especially produced by VTA;
Huang, Simpson, Kellendonk, & Kandel, 2004; Otani, Daniel, Roisin,
&Crepel, 2003). Notice that according to our hypothesis, the animal
brain devotes substantial resources (dopamine neurons, superior
colliculus and cortico-striatal plasticity mechanisms) to bringing
about this autonomously generated, transient change in policy.

An important element of the repetition bias is the fact that with
repeated experience of the phasic stimuli the DA learning signal
tends to be progressively diminished (Schultz, 1998). While the
brain mechanisms that implement this cancellation are not clear,
Redgrave et al. (2011) have hypothesised that this cancellation
is the result of an active inhibition from another brain system.
This might correspond to the BG (Smith, Raju, Pare, & Sidibe,
2004), or the inhibitory inputs from other structures such as the
lateral habenula (Balcita-Pedicino, Omelchenko, Bell, & Sesack,
2011). The progressive attenuation of the phasic dopamine signal
is critical for the transient nature of the repetition bias (Bolado-
Gomez et al., 2009; Gurney et al., 2009) and has theoretical
implications for optimal learning (Shah & Gurney, 2011). Indeed, if
the outcome is no more rewarding, the animal can disengage with
the newly learned action and resume exploration that might lead
to discovering other interesting actions and outcomes to learn.

What are the brain mechanisms that allow the exploitation
of actions once acquired? In the model, these are based on
cortico-cortical connections as these have been shown to play
an important role in the selection of actions based on current
goals, and one view of such intra-cortical connectivity is that it
implements an internal model of the action–outcome relationship
(Gurney et al., in press). In designing this aspect of the model, we
took into consideration proposals about themacroscopic structure
of the sensorimotor organisation of the brain Cisek and Kalaska
(2010) (see Caligiore, Borghi, Parisi, & Baldassarre, 2010, for a
model that captures the main features of this theory). These
proposals start from evidence that the visuo-motor pathways
in the brain are organised into two main neural pathways, the
dorsal and ventral streams (Goodale & Milner, 1992; Mishkin &
Ungerleider, 1982). The key idea is that these two streams encode
two main brain input–output mappings processing different
aspects perception and action: the dorsal stream encodes multiple
affordances and actions in parallel, while the ventral stream
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contributes to the selection of these affordances and actions. Both
streams are supported by the BG loops reviewed above.

The dorsal stream contains the PC, which encodes affordances
and implements the sensorimotor transformations that allow
the animal to perform an on-line guidance of action execution.
This stream also contains the PMC, which participates to the
selection and preparation of actions (e.g., reach to a point in space,
precision/power grasp, tear, etc.; Caligiore et al., 2010; Luppino
& Rizzolatti, 2000). Importantly, the dorsal stream is organised
in subsystems (Jeannerod, 1999; Rizzolatti & Matelli, 2003) that
manage the motor control of different actuators, in particular the
eyes (LIP in PC, and FEF in PFC; Simon et al., 2002; Snyder, Batista,
& Andersen, 2000), the arms (PRR in PC, and PMCd; Simon et al.,
2002; Wise et al., 1997), and the hands (anterior intraparietal area
in PC, and inferior PMC; Rizzolatti, Fogassi, & Gallese, 2002).

The ventral stream involves the inferior temporal cortex (ITC),
which plays an important role in object identification (Grill-
Spector & Malach, 2004), and the PFC (Fuster, 2008). The PFC is
a high-level multi-modal associative cortex receiving information
from ITC about the resources available in the environment,
and from limbic areas such as the amygdala (Amg; this is a
subcortical system playing a key role in emotional processes,
see below) about internal current needs and drives, and the
consequent value assigned to resources (Wallis, 2007). On the
basis of this information, the PFC forms goals and behavioural
rules and uses them to exert a top-down bias on the selection
of affordances and actions encoded within PC and the PMC in
dorsal subsystems (Caligiore et al., 2010; Miller & Cohen, 2001;
Yeterian, Pandya, Tomaiuolo, & Petrides, 2011). It is important to
notice that all the neural connections considered here undergo
learning processes, and these might be enhanced or made possible
by neuromodulators such as DA (Huang et al., 2004; Otani et al.,
2003).

Goal-directed behaviour is defined as a behaviour that is sensi-
tive to the manipulations of the current value of the behavioural
outcome (Balleine & Dickinson, 1998). The activation of goals is
based on their current value encoded in Amg, a fundamental hub
for the affective regulation of behaviour (Balleine, Killcross, & Dick-
inson, 2003; Cardinal, Parkinson, Hall, & Everitt, 2002; Mirolli,
Mannella, & Baldassarre, 2010; Pitkänen, Savander, & LeDoux,
1997). Amg transmits information to PFC both directly and via
the NAcc, a fundamental hub for goal-directed behaviour and DA-
based energisation of behaviour (Voorn, Vanderschuren, Groe-
newegen, Robbins, & Pennartz, 2004). In our model, the selection
of goals is done by a hardwired mechanism mimicking the Amg
goal selection at a phenomenological level. Our relatedwork (Man-
nella, Mirolli, & Baldassarre, 2010) shows how Amg might be im-
plemented in a more detailed fashion and support goal selection.

2.4. Computational and architectural description of the model

The detailed architecture of the model is illustrated in Fig. 3,
and is based on the empirical evidence presented in Section 2.3.
This figure, together with the model formal description below and
the parameters indicated in Tables 3–6 in the Appendix, furnish
all the information sufficient to replicate the model. Notice that,
from one point of view, the model is rather simple; all neural
units are described by similar equations (only the parameters
change for different groups of neurons; see the Appendix for
such parameters). Moreover, each component in the architecture,
being grounded in biological data is not ‘novel’ as such. In this
respect, our aim was to select, quantitatively specify, and integrate
a range of principles, mechanisms and ideas that, although not
singularly novel, have never been successfully combined into a
functionally coherent whole. From another point of view, then,
the model is indeed complex, as the behaviour of our particular
combination of neural components is, under many respects, non
intuitive. In this respect, the most interesting properties of the
model derive from the specific system-level connections shown
in Fig. 3 (often with feedback loops and nonlinearities), from the
dynamical interplay between its components while the system
interacts with the environment, and from the learning processes
described below.

The external inputs to the model have binary values (0 or
1). These inputs are: six inputs to the arm loop encoding the
identity of the foveated object; one input to the oculomotor loop
(always active at 1) representing the context; three inputs to the
PFC representing the three possible changes of the environment
(opening of the three boxes).

Each neural unit of the model intends to simulate the mean
activity of a population of real neurons. This choice is justified by
the type of study carried out here, in particular: (a) Our model is
focussed on cognitive system-level phenomena, such as habitual
and goal-directed behaviour, and slow learning processes, such as
trial-and-error action acquisition and action–outcome encoding:
these types of phenomena can be well captured with models
based on firing rate units (Anastasio, 2010, pp. xvi–xvii, Dayan
& Abbott, 2001, pp. 229–231); (b) The investigation of the target
phenomena does not require a fast response of neurons to rapidly
changing inputs, one of the main limitations of firing rate units
(Trappenberg, 2010, pp. 74–79). (c) The cognitive phenomena
investigated here rely on the mean field response of whole
populations of neurons, e.g. on the reciprocal influence of BG and
cortex, rather than on the fast time scale reactions happening at the
level of single neurons (Bojak, Oostendorp, Reid, & Kotter, 2003;
Brunel & Wang, 2001; Wilson & Cowan, 1972).

The basic building block of the model is thus a leaky integrator
unit defined by a continuous-time differential equation as follows:

τg u̇j = −uj + Jj + bj (1)

where τg is a time constant, uj is the activation potential of unit
j, bj is a baseline activation, and Jj represents the total net input to
the unit. For all units apart from those in striatum, the net input is
given by:

Jj =


i

wjiyi + Ij (2)

where yi is the output on unit i afferent to j (yi depends on an
activation function, see Eq. (4)) and Ij is an external input (only
present in the striatum division of the three loops, and in the PFC
outer layer), andwji is the connectionweight between units i and j.
For striatal units the activation potential includes an external input
and a dopaminergic modulation:

Jj = (ϵ + λd)


i

wjiyi + Ij


(3)

where d is the level of dopamine (see below) while ϵ and λ are
two parameters that control respectively the strength of thewhole
input to a unit and the multiplicative effect of DA.

The activation of all units is defined using a positive saturation
transfer function:

yj =

tanh


αg

uj − θg

+ (4)

where tanh(.) is the hyperbolic tangent function, αg is a constant
defining the slope of the hyperbolic function (related to the nucleus
or group, g , of units towhich j belongs), θg is a threshold parameter
(per unit group), and [.]+ is defined as [x]+ = 0 if x ≤ 0 and
[x]+ = x if x > 0. Notice that 0 < yj < 1 for all j.

The output units of the model include the three output units of
the arm loop (representing the triggering of the three arm actions,
see PMC/PRR), and the six output units of the oculomotor loop
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(representing foveation to the buttons and boxes, see FEF/LIP in
Fig. 3). The output units have an activation and transfer function
similar to the other units but they can trigger the execution of
their corresponding action each time their activation overcomes a
threshold of 0.8. A triggered action is maintained under execution
only if the corresponding output unit remains active above such a
threshold, otherwise the execution of the action is aborted and the
action fails to produce its effect.

The execution of an arm action lasted 1 s, and the execution
of saccade lasted 0.1 s. If a box opened it stayed open for 2 s.
Time constants τg (Table 4 in the Appendix) were chosen to give
behaviourally realistic times for actions and to allow the system to
learn to successfully terminate triggered actions most of the time.
The time step of the simulation update was 0.05 s.

Within each of the three main BG-cortical loops, BG contained
a direct, and hyperdirect pathway (the indirect pathway was not
simulating as its regulatory effect was not needed). For each of the
arm, oculomotor and goal loops, the direct pathway was formed
by the neural pathways Put → GPi, Cau → SNr,NAcc →

SNr, respectively. The hyperdirect pathway involved STN and the
corresponding output nucleus (GPi, SNr, SNr). The BG component
of each loop is similar to the model proposed by Leblois, Boraud,
Meissner, Bergman, and Hansel (2006). This model is related to
those of Gurney, Prescott, and Redgrave (2001a, 2001b) in their
reliance on diffuse STN and focussed striatal projections to form
an off-centre, on-surround network for selection.

In addition, in the current model the thalamic complex (Th)
is formed by a layer of units with lateral inhibitory connections.
These connections implement a winner-take-all competition that
gives an important contribution to the selection process working
on the possible options available from the striatum. Intra-thalamic
connectivity has also been proposed in this context by Humphries
and Gurney (2002). In order for the model to implement trial-and-
error reinforcement learning of new action combinations, there
must be a source of variation or ‘noise’ in the selection of these
actions. This is implemented in the thalamic components in which
the activation uj is added a uniform noise ranging in the interval
[−ν, +ν] at each time step.

The cortical component of each loop is formed by two
reciprocally connected layers of units putatively corresponding to
layers II/III (L2/3) – providing projections to other loops or external
output – and layers IV/V (L4/5)—which project back to the BG.
The units of L4/5 therefore encode the selected or ‘winning’ action
channel which, via recurrence and competitive processing through
the loops with BG, is able to reinforce the activation therein. This,
in combination with the reciprocal excitatory connections within
cortex, are parameterised such that the following two processes
are able to operate. First, the selected channel continues to be
selected for some time after any input that initiated its selection
has been removed. This ‘lock-in’ is needed so that the winning
channel can remain active for the duration of its associated action,
and thereby accomplish its corresponding outcome. A second
process is that selection of another channel must be possible when
new salient input appears on that channel, and this must occur
without any special ‘reset’ mechanism. These two processes are in
tension but the model is able to let them interact appropriately.

In addition, the units of L2/3 have a transfer function
with high threshold and slope. Moreover, they have all-to-all
lateral inhibitory connections that implement a winner-take-
all competition (Fig. 3). This endows the system with an extra
selective function, aside the one within the Th, which allows a
unique decision when there is a possible conflict between the
actions ‘suggested’ by the top–down cortico-cortical connections
from PFC and the selections being fostered by the BG.

The model also contains four functionally abstract, non-
neural (‘hardwired’) components: the SC, the DA inhibitor, the
sub-cortical eye control centres, and Amg. The SC responds to
luminance changes happening in the perceived scene: here it
becomes active when any box opens. In this case SC activates the
dopamine neuron units in SNc/VTA. The SNc/VTA is formed by
two units representing excitatory and inhibitory sub-populations
configured to produce an overall phasic response:

τSNc u̇in = −uin + ySC (5)

τSNc u̇ex = −uex + [ySC − uin]+ (6)

d∗
= [αSNc tanh(uex − θSNc)]+ (7)

where uin and uex are the activations of the inhibitory and
excitatory sub-populations in SNc/VTA, ySC is the output of SC, and
d∗ is the DA signal before the action of the ‘inhibitor’.

The inhibitor subsumes, in a phenomenological fashion, the
gradual attenuation of the phasic DA response if luminance
changes happening in the same location in the environment are
experienced several times, thereby becoming predictable/familiar.
This function is implemented with three simple counters Nk, k =

1, 2, 3, of the openings of the three boxes so that the DA signal
decreases linearly in proportion to each of Nk, until it reaches zero
for that box.

d =

d∗

− µNk
+ (8)

where d is the dopamine signal, µ is a rate coefficient, and k is the
currently opening box.

The model has also a hardwired component that drives the eye
to saccade where luminance changes take place. This mechanism,
which in animals is implemented by the SC and other sub-cortical
systems controlling eye movements, overrides the voluntary
actions selected by FEF/PC.

A final hardwired aspect of the model is the injection of
activation into channels of the goal loop during the test phase.
This activation, which mimics the attribution of values to the PFC
outcomes by subcortical regions such as Amg, allows testing the
capacity of the model to recall actions via the associated goals
(see Daw, Niv, & Dayan, 2005; Mannella et al., 2010, for more
biologically plausible models of this process).

The system undergoes two learning processes, the first
involving the afferents to striatum in the arm and oculomotor
loops, and the second involving the PFC → FEF/LIP and PFC →

PMC/PRR cortico-cortical connections (see Fig. 3). DA also reaches
the input connections of the goal loop, but here it only modulates
the activation of the striatal units (according to Eq. (3)) without
giving place to any learning. This amounts to the assumption that
the ability to associate valuewith a goal is already in place and does
not require learning. The striatal learning process allows the arm
loop to learn to associate suitable actions (e.g., press) to the seen
objects (e.g., button 1) and it allows the oculomotor loop to learn
to associate suitable saccades with the context unit so as to lead
the system to focus on a particular portion of space. The learning
process is based on a DA-dependent Hebbian learning rule:

y+

j =

yj − φstr

+ (9)

d+
= [d − φd]

+ (10)

1wji = ηstr d+y+

j


ŵstrIji − wji


− βwji (11)

where φstr and φd are thresholds for, respectively, the output and
DA which have to be exceeded for learning to take place, as
expressed in the quantities y+

j and d+, wji is the input connection
weight to the striatum, ŵstr is the maximum level that the weights
can reach, and Iji is the specific input i to the striatal unit j. The
weights are also subject to an input-independent spontaneous
decay with a constant rate β . The core component of the rule,
y+

j


ŵstrIji − wji


, contains aHebbian learning term, y+

j (ŵstrIji), that



G. Baldassarre et al. / Neural Networks 41 (2013) 168–187 177
increases the weight, and a term −y+

j wji that leads the weight to
decay in proportion to its value and the output y+

j (Willshaw &
von der Malsburg, 1976, and see Rolls & Treves, 1998 p. 72 for
a discussion). Overall, the component implies that each weight
wji progressively moves towards ŵstrIji in proportion to y+

j . The
input-independent spontaneous decay of the rule implies that
when DA is suppressed by the inhibitor (d = 0) the weights
progressively approach zero. This is at the basis of the transient
nature of the focussing of the oculomotor and arm actions caused
by the repetition bias.

The learning process involving the cortico-cortical connections
drives the association of each outcome encoded in the PFC (e.g.,
‘box 1 opens’) with a particular location in space selected by
oculomotor loop (e.g., ‘look at button 1’) and a particular action
of the arm loop (e.g., ‘press’). The learning process is also based
on a Hebbian learning rule, but invokes DA-dependent eligibility
traces gj of the arm and oculomotor loop units in PMC/PRR, and
FEF/LIP respectively. The eligibility trace is needed as the outcome
representation in PFC occurs some time after the actions that
caused it – the saccade to the button and the button press – and it
is these actions that need associatingwith the outcome, rather than
the subsequent saccade to the box. In this respect, DA caused by the
opening of the box occurs immediately after the activation of the
cortical units triggering the saccade (e.g., ‘look button 1’) and the
arm action (e.g., ‘press’) and is coincident with non-zero outputs
in these units. It can therefore be used to prime an eligibility
trace process which can subsequently be used in a Hebb-like rule
involving the PFC representation of the outcome (opening of the
box) when this eventually occurs. DA is indeed caused by the arm
action if it succeeds in opening a box, and such action follows the
saccade and takes some time to be executed. The eligibility trace
is charged when units of L2/3 within the oculomotor and the arm
loops activate, and this event is immediately followed by a DA
signal. Thus:

τtrġj = −gj + ζyjd (12)

1wji = ηctx gjyi(ŵctx − wji) (13)

where τtr is a time constant, gj is the eligibility trace of the FEF/LIP
or PMC/PRR unit j, ζ is a rate coefficient, wji is the connection
weight between the PFC unit i and the FEF/LIP or PMC/PRR unit
j, ηctx is a learning coefficient, yi is the unit of PFC, and ŵctx is a
maximum value reachable by wji.

The parameters of the model were set by manual search
to obtain a stable, functioning system, whose behaviour was
qualitatively similar to the behaviour of real subjects in the board
experiment. Indeed, it was not possible, given the system-level
nature of themodel, to try to set themodel parameters on the basis
of physiological data as the links between the two are not known.

3. Results

3.1. The intact model

This section first shows the behaviour of the full, ‘intact’ model
(also referred to as the ‘base’ model) shown in Fig. 3, and the
evolution of its trained connection weights during the learning
phase. Then the section shows the role of key elements of the
model, by comparing the performance of the intact model with
the performance of it when such elements are lesioned. Four
lesions were performed: lesion of the input connection weights
to the Put, or to the Cau, or to both, and lesion of the dopamine
inhibitor. The aim of the lesions of Put and Cau was to investigate
the (differential) effects that a reduced arm-action or attentional
focusing would have had on learning. The lesion of the inhibitor
was, instead, directed at investigating the role played in learning by
Fig. 4. Example of behaviour of the intact model during the training phase. Other
repetitions of the experiment produce qualitatively similar results. The y-axis
shows the number of executions of action compounds of the type ‘look at button
x, press button x’ (labelled Bt1-Press, Bt2-Press, and Bt3-Press for the three buttons),
and also the number of executions of all other action compounds considered
together (Other). Data are reported for time bins lasting two min each.

the key feature of IMs related to their transient nature. Note that,
currently, there are no empirical data to verify the lesion results,
so these have to be considered predictions of the model testable in
future experiments.

Fig. 4 shows the actions performed by the model during a
learning phase of 60 min; here time is divided into 30 time
bins lasting 2 min each. The figure shows a specific example
of training because it is not possible to plot an average of the
behaviours of different simulation runs. The reasons is that systems
from different simulations focus on exploring the buttons in
different order or with asynchronous focusing periods. However,
all simulation runs showed qualitatively similar behaviours.
Initially (first 2 bins), the model performs a random exploration
of the environment (executing random saccades and arm actions),
but soon focusses to look at, and press, button 2. However, this
focussing is transient: it lasts for about 8 min, after which the
model focusses on button 1 for about 10 min and then on button
3 for about 8 min. After these focussed activities, the system again
engages in a randomexploration of the environment. The focussing
of actions in this way is exactly what wemean by ‘repetition bias’.

We now illustrate the system behaviour and internal function-
ing during learning. Fig. 5 shows the dynamics of the striatal in-
put connection weights of the arm and oculomotor loops, and also
the cortico-cortical connectionweights from the PFC to FEF/LIP and
PMC/PRR, during training. Fig. 5(a) and (b) shows how the striatal
input connections of both the arm and oculomotor loops undergo
an initial increase in strength followed by a decrease: this tran-
sient change keeps the activities of the system focussed on each
button for about 5–10 min. Each transient focus is driven by the
initial high level of DA produced by the sight of the opening of a
box followed by a progressive inhibition of it due to the inhibitor
update. Fig. 5(c) and (d) shows how this transient focussing leads
to quickly develop the cortico-cortical connection weights encod-
ing the action–outcome associations linking the various outcomes
with the eye and arm actions that led to cause them. In contrast to
the transient striatal weights, theseweights permanently store the
‘knowledge’ about the task (action–outcome contingencies). Over-
all these results show that themodel is indeed capable of acquiring
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Fig. 5. Example of development of the trained connectionweights of themodel during the learning phase. (a) Input connectionweights to Put (arm loop striatum). Bt1-Press,
Bt2-Press, Bt3-Press: connection weights between the input units representing button 1, 2 and 3, and the BG channel of the press action. Other: average of all other input
connection weights. (b) Input connection weights to Cau (oculomotor loop striatum). B-Bt1, B-Bt2, B-Bt3: connection weights between the context unit and the BG channels
related to looking at button 1, 2, and 3. (c) Cortico-cortical connection weights from the PFC (goal loop cortex) to the PMC/PRR (arm loop cortex). G1-Press, G2-Press, G3-Press:
connection weights between the PFC units encoding the three goals and the PMC/PRR unit encoding the press action. (d) Cortico-cortical connection weights from the PFC
to the FEF/LIP (oculomotor loop cortex). G1-Bt1, G2-Bt2, G3-Bt3: connection weights between the PFC units encoding the goals and the FEF/LIP units related to looking at
button 1, 2, and 3.
an effective goal-directed behaviour on the basis of the DA learn-
ing signal caused by IMs and the transient learning processes of the
striatum (repetition bias).

An evaluation based on the test procedure was performed at
6 min intervals during the learning phase to evaluate performance
as learning progressed. Each evaluation comprised 50 repetitions
of the test phase in which the three goals were sequentially
activated, each one for 2 min (single time bin), making a test
phase of 6 min duration in all. We introduce a simple notation to
explain clearly how the performance of the model was measured
in this evaluation. Let mrg be the number of correct box-openings
for goal g = 1, 2, 3 during the repetition r = 1, 2, . . . , 50
of the test-phase, and let Mr =


g mrg
3 . Let σr be the standard

deviation of the mrg for repetition r . Performance was measured
in two ways: in terms of the mean number of correct box-
openings ⟨Mr⟩ measured over the 50 repetitions; and in terms of
the mean of the standard deviations ⟨σr⟩ again computed over
the 50 repetitions. The first metric gives an information on how
good the system is in accomplishing the goals, given the amount
of learning time available in the training phase. The second metric
gives information on how differentiated the performance is for the
different goals, again given the amount of learning time available.
The performance based on these two metrics is shown in
Figs. 6 and 7 respectively. The intact model performs the correct
actions (fixation of the correct button and press) very efficiently
after the whole training. The performance decreases progressively
with the decrease of the learning time available. This shows that
the exploration and action acquisition driven by IMs during the
learning phase led the system to acquire the needed cortical
connections weights (‘internal models’) that later allow it to recall
suitable actions to pursue the desired goals.

3.2. The lesioned model

The input connections to the arm and oculomotor loop striatum
were lesioned in isolation, or together, to quantify the effects of the
repetition bias of the arm or oculomotor actions on the speed of
learning. Note that when the striatal input connections to either
one of the loops are lesioned, such loop selects actions randomly.
This still allows the formation of cortico-cortical connections, but
slows down their development. The figures show that the intact
model has the highest rate of action acquisition, followed by the
two conditions of Put or Cau lesions, the condition of simultaneous
Put and Cau lesions, and finally the inhibitor lesion.



G. Baldassarre et al. / Neural Networks 41 (2013) 168–187 179
Fig. 6. Performance of the non-lesioned model (‘Intact’) and four versions of the model where lesions were performed to the input connections to the arm loop (Put),
oculomotor loop (Cau), both loops (Put-Cau), or to the inhibitor (Inh). For each condition, each individual histogram bar is defined by the metric ⟨Mg ⟩ (mean number of
correct box openings per goal over 50 tests, see text). Performance was measured at 6 min intervals, corresponding to the histogram bars, over the entire learning phase
(so the last histogram bar of each condition reports the performance of the corresponding model after a full learning period of 60 min). The histogram bars also report the
standard error over the 50 repetitions.
Fig. 7. Data related to the same experiments described in Fig. 6 but defined by the metric ⟨σM
j ⟩ (based on the standard deviation of box-openings for the different goals,

averaged over the 50 repetitions of the test, see text). This is done at 6 min intervals over the entire learning phase (histogram bars). Histogram bars also report the standard
error over the 50 repetitions.
The lesion of the Cau in the oculomotor loop slows the
learning process as the system wastes time looking at (and hence
interacting with) the boxes rather than the buttons. The lesion of
the Put in the arm loop slows learning as the system performs
many of the inconsequential ‘dummy’ actions on the buttons. Fig. 6
shows that the Put lesion leads to a lower performance than the
Cau lesion for intermediate training times, as the formermodel still
has Cau intact and so tends to focus on one button before passing
to another one. As the intactmodel takes almost the entire training
phase to progress through all buttons, at intermediate learning
times the model with lesioned Put (but intact Cau) terminates
learning while having still little knowledge of some buttons (those
on which it did not have time to focus learning). In contrast, the
Cau lesion (no attentional focus) still allows the system to learn to
interact with all buttons to a certain extent with any duration of
learning, so giving it a better overall performance with respect to
the Put lesioned model when the available learning time is short.

This tension between an even spread of learning across the
buttons versus a focussed, button-by-button approach is fully
manifest in Fig. 7. When the Cau input is present (Intact and Put
conditions), at intermediate times the variance in performance
across the three goals is large, as good performance is skewed
preferentially to only one or two goals. In contrast, when the Cau
input is lesioned (Cau and Put + Cau conditions) the system tends
to uniformly learn all action–outcome associations at the same
time, giving a smaller variance at all stages. The lesion of both Put
and Cau further slows learning as the system wastes time to both
look at, and interact with, the boxes (due to the Cau lesion), or to
perform the wrong actions on buttons (due to the Put lesion).

Figs. 6 and 7 also show the effect of a lesion of the inhibitor
on learning. In this condition the capacity to pursue the goals
remains quite low (Fig. 6). The reason is that the DA produced by a
box opening does not decrease, so the system remains obsessively
focussed on looking at, and performing the press actions, on one
button only. This implies that, at the end of learning, the system is
capable of pursuing only one goal, as shown by the high variance of
performance across different goals independently of the duration
of the learning phase (Fig. 7).

The explanations given above, in terms of relative focus or
spread of action selection, are confirmed in Fig. 8 which shows
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Fig. 8. Example of actions performed by the model affected by different types of lesions, plotted as in Fig. 4. Other repetitions of the experiments produce qualitatively
similar results. (a) Lesion of the input connections to Put (arm loop). (b) Lesion of the input connections to Cau (oculomotor loop). (c) Lesion of the input connections to both
Put and Cau. (d) Lesion of the inhibitor.
the behaviour of a single instance of the model in the four lesion
conditions, allowing comparison with the behaviour of the intact
model in Fig. 4. In particular, Fig. 8(a) confirms that the lesion
of the Put still allows the model to focus its interaction on the
buttons one by one. In comparison to the intact model, however,
the interactionwith each button is longer (about 15–20min) as the
actions performed with the arm are random. This, in turn, causes a
less frequent production of the DA learning signal, a less frequent
update of the inhibitor, and, as a consequence, the slowing down
of the learning of the striatum and cortex.

In the case of the Cau lesion, Fig. 8(b) shows that the system
interacts with all buttons at the same time. This eventually
leads the system to learn to act suitably on them. However,
we conjecture that this behaviour would not scale up well
with the number of actions to learn (only three in this case)
and that ‘spreading’ of learning over large numbers of actions
(as encountered in a real ecological setting, for example) will
eventually lead to failure to learn any of them. When both Put
and Cau are lesioned (Fig. 8(c)) the rate of foveation to closed
boxes and the performance of irrelevant actions is quite high
and this makes learning inefficient. Finally, when the inhibitor
is lesioned (Fig. 8(d)), the system focusses attention and action
on only one button and does not disengage from it even after
a prolonged training, so impeding the acquisition of skills and
knowledge related to other buttons and boxes.
Fig. 9 shows the effects of lesions of the Put or the Cau on
the development of the input connection weights of the Cau and
Put, respectively. The dynamics of these weights underlie the
behaviour of the respective systems illustrated above. Fig. 9(a)
indicates that in the case of the Put lesion, the system learns the
Cau weights related to the different buttons one by one, further
confirming that the learning processes proceed in sub-phases
driven by the focussing of attention. In the case of the Cau lesion,
instead, Fig. 9(b) shows that the acquisition of knowledge related
to the three buttons tends to take place in parallel.

Fig. 10 shows the development of the cortico-cortical connec-
tion weights with the four lesions. These weights represent the
action–outcome knowledge (internal model) produced by the
training processes illustrated above. In the case of the Put lesion
(arm loop; Fig. 10(a)), the system acquires each action–outcome
association relatively fast as it still focuses the learning processes
on the different buttons one by one. However, the process is
slightly slower than in the case of the intactmodel (see Fig. 5(d)). In
the case of the Cau lesion (oculomotor loop; Fig. 10(b)), the system
acquires the knowledge on the three action–outcome associations
in parallel as it does not focus on single experiences. The same hap-
pens if the Put and Cau are lesioned together, even if learning now
proceeds at an even slower pace (Fig. 10(c)). In case the inhibitor
is lesioned (Fig. 10(d)) the system learns only the action–outcome
association useful to open the second box as it remains focussed on
the second button for the whole duration of the learning phase.
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Fig. 9. Example of the effects that the lesion of the Put (arm loop) or the Cau (oculomotor loop) cause on the development of the input connection weights to the Cau and
Put, respectively. (a) Put lesion, Cau connection weights. (b) Cau lesion, Put connection weights.
Fig. 10. Example of dynamics of the connection weights linking PFC to FEF/LIP that themodel affected by the four lesions exhibits during the learning phase (the connection
weights from PFC to PMC/PRR, not reported here for brevity, exhibit similar dynamics). Data are plotted as done in Fig. 5(d). (a) Lesion of the input connections to Put (arm
loop). (b) Lesion of the input connections to Cau (oculomotor loop). (c) Lesion of the input connections to both Put and Cau. (d) Lesion of the inhibitor.
4. Discussion and conclusions

This research has proposed a novel model that furnishes an
operational hypothesis on how intrinsic motivations can support
the acquisition of a repertoire of actions and the encoding
of the related action–outcome associations, and on how these
associations can be later used to recall the actions when these
might be useful for adaptation (i.e., to accomplish an extrinsic
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reward). The value of the model resides in the fact that, based
on an architecture constrained at the system-level with relevant
neuroscientific evidence, it integrates a number of important
mechanisms and processes important for IM: (a) an overall
sensorimotor architecture, based on striato-cortical loops, that
includes an oculomotor and an arm-control circuit (allowing
the agent to explore the environment both perceptually and
operantly), and a goal circuit supporting goal-directed behaviour;
(b) a mechanism for guiding learning based on novel events, based
on SC and a progressive inhibition of DA signals; (c) a repetition
biasmechanism that supports an effective focussing of the learning
resources on different available experiences; (d) the learning of
internal models of action–outcome contingencies, and their later
exploitation to recall actions via a value-based reactivation of
goals within PFC. Several of these mechanisms and processes were
proposed in Redgrave and Gurney (2006) based on neuroscientific
evidence and theoretical analyses. In this paper, however, we have
specified these mechanisms quantitatively and added additional
hypotheses relating to the mechanisms and neural substrate for
the learning of action–outcomes, the recall of goals and their effect
on action selection, the synchronisation of bottom-up and top-
down processes, themanagement of the emergent dynamics of the
learning processes based on the repetition bias. In so doing, the
model represents the first relatively complete implementation of
the original theory.

The main results are that (i) a simple, but biologically inspired
implementation of repetition bias supports efficient learning
of action–outcome associations. (ii) These associations may be
formed across disparate action components (i.e. in both the
oculomotor and arm-control circuits). (iii) The different roles of
repetition bias on visual action focussing and focussing of arm
movements is revealed by a series of selective lesions; this leads to
predictions that may be tested on animals. (iv) These lesions also
highlight the role of repetition bias in focussing action acquisition
sequentially for, when this does not occur, learning of the internal
models in the cortex is compromised. The spreading of ‘action
focus’ that ensues from poor repetition bias does not prevent
this learning in the toy domain used here, where there are few
action combinations, but the combinatorial explosion of these
combinations in a more realistic setting, may prevent adequate
association learning altogether. (v) The model shows how the
internalmodels of action–outcome contingency learned under IMs
can be recruited for goal-directed activity.

Preliminary data from the empirical experiments run with
children are broadly consistent with the model’s behaviour. The
model has also produced various predictions based on lesions
that might be tested in future experiments. Preliminary results
with a version of the model embodied in a humanoid robot are
encouraging and will be reported elsewhere.

4.1. Biological and psychological issues

Various elements of themodel open interesting issues that need
to be further investigated or developed in future work. A first
element is the generation of the dopamine learning signal by the
SC. The generation of learning signals by intrinsic motivations, for
example based on DA, is a critical aspect for themodel. The current
version of the model focusses on the generation of a learning
signal by the SC when a change of luminance happens in the
environment. This has been shown to play an important role in
driving striatal plasticity underlying trial-and-error learning (see
Redgrave & Gurney, 2006, for a review). An open problem on
this is how far intrinsically motivated acquisition of behaviours
can be supported by such a mechanism, considering that the SC
cannot distinguish between different textures, colours, shapes, etc.
In this respect, a more sophisticated capability of detecting the
consequences of actions seems needed to acquire some skills (for
instance, learning to arrange two familiar objects in a particular
novel spatial relation, e.g. for learning to stick one toy block on
top of another). Other brain components might generate learning
signals in these situations. For example the hippocampus has been
shown to respond to novel objects, or novel spatial or temporal
combinations of familiar objects, and to activate dopaminergic
neurons on this basis (Lisman & Grace, 2005). A related and
currently debated issue is the nature of the DA signal itself: is
this related to (extrinsic) rewards (Schultz, 1998), or phasic stimuli
(neutral or rewarding) as in this model (Redgrave & Gurney, 2006),
or both? Future investigations, both empirical and theoretical,
are needed to fully disentangle this issue (e.g., see Santucci,
Baldassarre, &Mirolli, 2010, for a model andMirolli, Baldassarre, &
Santucci, submitted for publication, for a theoretical proposal that
aims to reconcile the two views).

A second issue concerns the learning rules, especially in
striatum, where the dynamics of the weights are complex and
have to show a phasic behaviour with ‘spontaneous decay’.
These rules are currently somewhat phenomenological and, while
suitable for a high level treatment of the kind considered in
this model, there is plenty of scope for incorporating more
biological realism. Data from studies in cortico-striatal plasticity
have provided a complex and often confusing picture, because
of the dependence of plasticity on D1 and D2 type dopamine
receptors, and on dopamine levels themselves. Recently a study
by Shen, Flajolet, Greengard, and Surmeier (2008) using powerful
transgenic, in vitro techniques, has shed light on these issues,
and shows a rich variety of cortico-striatal plasticity under spike-
timing-dependent-plasticity (STDP) protocols. We have recently
developed a modelling framework to explain this data and,
remarkably, the in vitro data are entirely consistent with the
action–outcome learning schema (Gurney et al., 2009). Related,
biologically plausible learning rules have also been investigated in
a study of repetition bias in behaving agents (Bolado-Gomez et al.,
2009). It remains a challenge to integrate these new rules into the
kind of system-level model described here but this promises more
natural accounts of the dynamics of cortico-striatal plasticity.

Another issue opened up by the model concerns the timing
of the learning processes taking place within the striatum, the
cortex, and the (hardwired) inhibitor. This timing is important
as the release from repetition bias (‘unfocussing’ of the action
selection) due to the weight decay in striatum (in turn driven by
the dopamine decrease caused by the inhibitor) has to have the
same time scale as the learning of action–outcomes of the cortex.
Indeed, if the unlearning of the striatum is too fast, theremight not
be enough time for the cortex to learn action–outcomes, whereas
if it is too slow it might lead the system to waste time on activities
whose effects have already been learned. In relation to this
point, the biological literature indicates that intra-cortical learning
leading to the automatisation of behaviour is usually thought to
take longer than the striatal learning processes (cf. Ashby et al.,
2010). However, the learning speed of the cortex might increase
in cases where it is innervated by DA (Huang et al., 2004; Otani
et al., 2003). Another solution to the problem might also come
from forgetting processes involving the inhibitor: an attenuation
of the effectiveness of this component might allow the system to
periodically re-establish ‘interest’ in previous experience, thereby
allowing a refinement of the knowledge on action–outcomes
acquired by cortex. In this respect, many biological learning show
that, when learning is repeated in sessions held on different days,
both the behavioural skills and the synaptic plasticity tend to
increase during each session, but also to partially regress towards
initial levels from one session to the other (Lieberman, 1993).

Another important element of the model that needs to
be further investigated is the dopamine ‘inhibitor’ (currently
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hardwired). The function of this component is to drive the
progressive attenuation of the dopaminergic learning signal. As
discussed in Section 2.3, various possibilities exist that could
support such a mechanism (Redgrave et al., 2011). These include
the inhibitory efferents of the SNr, which also project to the
SC (Hikosaka et al., 2000), or the BG efferents to dopaminergic
neurons; another possibility might be the inhibitory projections
of lateral habenula to dopaminergic areas (Balcita-Pedicino et al.,
2011). This issue is further discussed below from a computational
perspective.

There are also some open issues related to the capacity of the
model to recall actions once learned. A first issue is related to the
internal mechanisms which drive the recall of outcomes (goals),
currently hardwired in the model. Internal drives based on EMs
are a primary source of the recall of actions when the organism
needs to satisfy particular needs: this is indeed a key function
of ‘motivations’ (Panksepp, 1998). The goal-directed literature
recalled in Section 2.3 proposes that sub-cortical structures play
a key role in this processes, in particular the Amg (Cardinal et al.,
2002;Mirolli et al., 2010). Amg has been shown to play a key role in
the assignment of biological value to goals and hence in their recall,
an important process at the basis of ‘goal-directed behaviour’
(Balleine & Dickinson, 1998, Balleine et al., 2003), especially via
NAcc (Pennartz, Ito, Verschure, Battaglia, & Robbins, 2011). The
model presented here will be updated in the future with the
addition of an Amg component based on the model presented by
Mannella et al. (2010). This module will be capable of learning to
assign a value to goals (e.g., by seeing a food item in a box themodel
will ‘value’ the goal of opening that box) and on this basis to recall
the skills previously acquired with IMs.

4.2. Computational issues

The Introduction distinguished between knowledge-based IMs
(KB-IMs) and competence-based IMs (CB-IMs) relying on the
typology proposed in Oudeyer and Kaplan (2007). Further, it
specified that, as argued by Mirolli and Baldassarre (in press),
there can be to distinct KB-IM and CB-IM mechanisms that can be
both used for the acquisition of either knowledge or competence
(i.e., two distinct KB-IM and CB-IM functions). This raises the
question of the nature of the algorithm presented here, based
on the SC and the inhibitor, with respect to these classes. The
answer is that such an algorithm is a KB-IM mechanism serving
the function of competence acquisition. It is a KB-IM mechanism
as it measures the novelty of salient events (box openings) on
the basis of how frequently they have been experienced but
independently of the capacity of the system to cause them
(competence). The function served by this mechanism, however,
is the acquisition of competence, namely the acquisition of
action–outcome contingencies (in particular an inverse model).

The particular type of KB-IM mechanism used here has been
investigated within the computational literature by Schmidhuber
(1991b) (see Schmidhuber, 2010 for a review of this and other
similar approaches). Themodel proposed in this work is formed by
a predictor component (that learns to predict the next sensations
on the basis of the current state and the planned actions), and a
reinforcement learning component (equivalent to the dopamine-
based trial-and-error learning used in the model proposed here).
The reinforcement learning component learns to perform actions
on the basis of a reward signal given by the (absolute value) of
the error of prediction of the predictor. The interaction of these
two components lead the system to perform actions that bring the
agent in states of the world that cause a high error of the predictor.
This allows the predictor to learn the new situations and so to drive
the agent to seek novel experiences.
Table 2
Acronyms used in the paper.

Brain components

Amygdala Amg
Basal ganglia BG
Caudatum Cau
Frontal eye fields FEF
Globus pallidus internum GPi
Inferior temporal cortex ITC
Lateral intraparietal cortex LIP
Layer II/III of cortex L2/3
Layer IV/V of cortex L4/5
Nucleus accumbens NAcc
Parietal cortex PC
Parietal reach region PRR
Prefrontal cortex PFC
Premotor cortex PMC
Putamen Put
Striatum Str
Superior colliculus SC
Substantia nigra pars compacta SNc
Substantia nigra pars reticulata SNr
Subthalamic nucleus STN
Ventral tegmental area VTA
Thalamus Th

Other

Dopamine DA
Extrinsic motivations EMs
Intrinsic motivations IMs
Knowledge-based IMs KB-IMs
Competence-based IMs CB-IMs
Long term depression LTD
Long term potentiation LTP

Interestingly, Schmidhuber (1991a, 1999) (see Schmidhuber,
2010, for a review) has later proposed that this mechanism
might have difficulties if the predictor cannot learn to predict the
consequences of some actions, in particular because the world
is stochastic or because of the computational limitations of the
predictor. The author suggests that a solution to this problem is to
use the improvement of the prediction error instead of the prediction
error as a reinforcement signal. What is interesting is that from
a biological perspective it seems that the SC works on the basis
of a prediction error and so it should be affected by the problem
highlighted by Schmidhuber. However, the problem might indeed
be solved by other additional mechanisms. For example, Mirolli
et al. (submitted for publication) and Santucci et al. (2010) propose
a possible computational solution to the problem: if a hierarchical
organisation of actions is used, and learning resources are allocated
to different regions of sensorimotor space in proportion to the
learning rate of skills in those regions, as done in Schembri, Mirolli,
and Baldassarre (2007a, 2007b) and Schembri et al. (2007c) (see
Baldassarre & Mirolli, in press, for a review), then the problem
raised by Schmidhuber could be solved. Indeed, in this case, the
focussing of learning resources on different regions would depend
on the actual skills acquired (competence), not on the capacity of
the predictor to predict, used to train the skills themselves (notice,
however, that in this hypothesis the progressive inhibition of the
signal used to train the skills might not be required altogether).

The problem of coupling between the learning speed of the
striatumand the cortex has also implications froma computational
perspective. This is related to the issue of using a KB-IM
mechanism, as done here, for the acquisition of competence. The
use of KB-IM mechanisms to acquire competence has become
quite common in the computational literature since the classic
models on IMs (Oudeyer, Kaplan, & Hafner, 2007; Schmidhuber,
1991a, 1991b; but note that there are important models that use
CB-IM mechanisms to acquire competence, e.g., Hart & Grupen,
2011; Schembri et al., 2007c; Singh, Barto, & Chentanez, 2005).
However, as highlighted in Mirolli and Baldassarre (in press), this
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Table 3
Connection weights within each striato-cortical loop.

Loop

Inter-layer connections Put Cau NAcc

Input → Str +0.4 +0.4 +0.4
L4/5 → Str +1.0 +1.0 +0.5
L4/5 → STN +1.6 +1.0 +1.0
STN → GPi/SNr +1.4 +0.8 +3.4
Str → GPi/SNr −3.0 −3.0 −3.0
GPi/SNr → Th −2.0 −2.0 −2.0
Thal → L4/5 +2.8 +2.8 +2.8
L4/5 → L2/3 +1.0 +1.0 +1.0
L2/3 → L4/5 +0.5 +0.5 +0.5

Intra-layer connections Put Cau NAcc

Th self-connection +1.2 +1.2 +0.3
Th lateral-connection −8.0 −4.0 −1.0
L2/3 lateral-connection −2.0 −2.0 −2.0

Neuromodulatory connections Put Cau NAcc

DA-dependent Str +4.0 +4.0 +4.0
DA-independent Str +0.2 +0.2 +0.2

Table 4
Parameters regulating the activation of units within the striato-cortical loops.

Loop

Decays (τg ) Put Cau NAcc

Str 0.3 0.3 0.3
STN 0.3 0.3 0.3
GPi/SNr 0.3 0.3 0.3
Th 0.3 0.3 0.3
L4/5 1.2 0.3 1.2
L2/3 0.3 0.3 0.3

Baseline potentials (bg ) Put Cau NAcc

Str 0.0 0.0 0.0
STN 0.5 0.5 0.5
GPi/SNr 0.0 0.0 0.0
Th 2.0 2.0 2.0
L4/5 0.0 0.0 0.0
L2/3 0.0 0.0 0.0

Output thresholds (θg ) Put Cau NAcc

Str 0.0 0.0 0.0
STN 0.0 0.0 0.0
GPi/SNr 0.0 0.0 0.0
Th 0.0 0.0 0.0
L4/5 0.6 0.6 0.6
L2/3 0.8 0.8 0.8

Output slopes (αg ) Put Cau NAcc

Str 1.0 1.0 1.0
STN 1.0 1.0 1.0
GPi/SNr 1.0 1.0 1.0
Th 1.0 1.0 1.0
L4/5 1.0 1.0 1.0
L2/3 20.0 20.0 20.0

Noise range ([−ν, +ν])

Th [−3.5, +3.5] [−3.5, +3.5] [−3.5, +3.5]

Table 5
Parameters regulating the activation of units within the SNc/VTA.

Parameters Values

Decay (τSNc) 0.1
Output thresholds (θSNc) 0.0
Output slopes (αSNc) 1.0

approach might have some limitations if the goal of the system
is mainly to acquire competence due to the fact that the process
leading to acquire knowledge might be faster or slower than the
process leading to acquire competence. For example, in the model
Table 6
Parameters that regulate the learning processes.

Inhibitor

Novelty decay (µ) 0.001

Learning rates

Input → Put (ηstr) 0.06
Input → Cau (ηstr) 0.06
PFC → FEF/LIP (ηctx) 0.001
PFC → PMC/PRR (ηctx) 0.001

Deacy rates

Input → Put (β) 0.001
Input → Cau (β) 0.001

Saturation thresholds

Input → Put (ŵstr) 50
Input → Cau (ŵstr) 50
PFC → FEF/LIP (ŵctx) 1.5
PFC → PMC/PRR (ŵctx) 1.5

Learning thresholds

DA (φd) 0.6
Str (φstr) 0.95

Cortical traces

Decay (τtr) 8
Charging coefficient (ζ ) 60

considered here, a too fast learning of the inhibitor would not
allow a full acquisition of action–outcome contingencies related to
one button. On the other side, a too slow learning of the inhibitor
would lead towaste time to explore a buttonwhen the competence
related to it has already been acquired. A solution to this problem
might be based on an inhibitor that incorporates a mechanism
that automatically ensures a coupling between the two learning
processes. This result can be achieved with an inhibitor that
measures the actual acquired competence instead of the acquired
knowledge. For example, in the case of our model, one might
aim to create an inhibitor that learns to actively inhibit phasic
DA based on the actual success of the system in achieving the
outcome, with a complete cessation of phasic DA only when the
skill/action–outcome associations are fully learned. A successful
coupling between two learning processes is for example achieved
by the reinforcement learning actor–critic model (Sutton & Barto,
1998). In this model, the learning of the critic component (a
predictor of reward) closely follows the learning of the actor
component (which acquires competence). This idea is indeed
exploited in themodel of Baldassarre &Mirolli, in pressmentioned
above to build a CB-IM mechanism. One might investigate if and
how it is possible to exploit a similar mechanism to implement
the inhibitor within the current model, also considering that the
actor–critic model is often used to capture the reward prediction
error signalled by DA and the acquisition of instrumental skills by
BG (Houk, Adams, & Andrew, 1995; Joel et al., 2002).

From a computational perspective, another direction in which
the model should be developed concerns the representation and
use of goals. First, goals should be encoded and learned on the basis
of actual experiences from the environment (this aspect is rather
abstract in the current model). Second, they might be activated
in an anticipatory fashion not only during action recall but also
during learning, giving rise to a ‘goal-based learning’ process for
which the activation of goals might aid learning in several ways,
for example by focussing experience on relevant portions of space
and by generating learning signals (Baldassarre, 2002, 2003).

Although we think all these open issues call for further
developments and refinements of the model in the future, the
model architecture represents a novel framework to further
develop the theoretical understanding and empirical investigation
on how actions and actions–outcomes are first learned on the basis
of IMs and then exploited based on goals activated by EMs.
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