CS46 practice problems 9

These practice problems are an opportunity for discussion and trying many different solutions. It is **not counted towards your grade**, and **you do not have to submit your solutions.** The purpose of this lab is to <u>practice with Turing machines</u> and our many accumulated techniques for proving things about Turing machines.

1. Equal language checking for grammars.

 $EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are context-free grammars and } L(G) = L(H) \}$

- (a) Show that EQ_{CFG} is co-Turing-recognizable.¹
- (b) Show that EQ_{CFG} is undecidable.² (Note: this is why Automata Tutor for grammars ran thousands of test strings, instead of giving a definite answer!)
- 2. Classifying languages. For each of the following languages, is the language decidable?³ Turing-recognizable? co-Turing-recognizable?

Provided an argument for your answers. (Give the deciders/recognizers that you claim exist, and show why they work; if they do not exist, then prove why not.)

You may consider the questions in any order, if proving one helps you with another.

- (a) $ALL_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \Sigma^* \}$
- (b) $ODD_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ contains no strings of even length} \}$
- (c) $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$
- (d) $HUNDRED_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ never moves its head past the 100th tape square during its computation on } w \}$

¹Hint: Use nondeterminism.

²Hint: Theorem 5.13 shows ALL_{CFG} is undecidable; you can use this result without proof.

³Hint: We already know that $E_{\rm TM}$ it is not decidable, Theorem 5.2.