CS46 practice problems 12

These practice problems are an opportunity for discussion and trying many different solutions. It
is not counted towards your grade, and you do not have to submit your solutions. The
purpose of these problems is to get more comfortable with reasoning and writing about P, NP,
and polynomial-time reductions.

If you are stumped or looking for guidance, ask.

1. Show that if CONP # NP then P # NP.

2. A vertex cover in a graph G = (V| E) is a subset S C Vof vertices where every edge of G
has at least one endpoint in the subset.

VERTEXCOVER = {(G, k) | G has a k-node vertex cover }

An independent set in a graph G is a subset of vertices with no edges between them.

INDEPENDENTSET = {(G, k) | G contains an independent set of k vertices }

Show that INDEPENDENTSET <,, VERTEXCOVER.

3. Boolean formulas, NP , and an application of NFAs.

Some useful vocabulary:

A literal is a Boolean variable or a negated Boolean variable, like x or Z.

The symbol “V” means “or”. (This is a disjunction.)

The symbol “A” means “and”. (This is a conjunction.)

A Boolean formula is an expression involving Boolean variables and operations, for
example (ZAy)V (z AZ).

A clause is a disjunction of literals, like x V y V Z.

A formula is satisfiable if there is a truth assignment (giving a truth value to each
variable) which makes the entire formula evaluate to TRUE.

A Boolean formula is in conjunctive normal form (CNF) if it is written as the con-
junction of clauses, for example:

(.%'1 V $2) A (fz VI3V x4) VAN (:E5 VIV .%'6) VAN (:Bg)
Show that SATISFIABILITY € NP, where
SATISFIABILITY = {(¢) | ¢ is a satisfiable CNF Boolean formula}

There are two ways to do this: either give a nondeterministic polynomial-time decider,
OR give a deterministic polynomial-time verifier. You should try both techniques for
showing SATISFIABILITY € NP. (They will have very similar details!)

Define the language:
L = {(¢) | ¢ is a satisfiable CNF formula where each variable appears at most twice}

Show that L € P.

(¢) For a CNF formula ¢ with m variables and ¢ clauses, show you can construct in poly-
nomial time an NFA with O(cm) states that accepts all nonsatisfying assignments,
represented as binary strings of length m.

(This implies that if P # NP, then NFAs cannot be minimized in polynomial time.)

