CS46 practice problems 11

These practice problems are an opportunity for discussion and trying many different solutions. It is not counted towards your grade, and you do not have to submit your solutions. The purpose of these problems is to get more comfortable with reasoning and writing about P and NP.

If you are stumped or looking for guidance, ask.

1. Closure properties.

(a) Prove that P is closed under complement. (We discussed this in lecture last week!)
(b) Prove that P is closed under concatenation.
(c) Prove that P is closed under union.
(d) Show that P is closed under Kleene star.
(Hint: you may want to consider a technique similar to how we built a table in lab 6 for determining if a grammar in Chomsky Normal Form could generate a string w. You probably showed decidable or recognizable languages were closed under Kleene star using non-determinism. Languages in P can only use deterministic Turing machines that run in polynomial time.)
(e) Prove that NP is closed under union.
(f) Prove that NP is closed under concatenation.
2. Boolean formulas, NP, and an application of NFAs.

Some useful vocabulary:

- a literal is a Boolean variable or a negated Boolean variable, like x or \bar{x}
- The symbol " \vee " means "or". (This is a disjunction.)
- The symbol " \wedge " means "and". (This is a conjunction.)
- a clause is a disjunction of literals, like $x \vee y \vee \bar{z}$
- A formula is satisfiable if there is a truth assignment (giving a truth value to each variable) which makes the entire formula evaluate to True.
(a) Show that Satisfiability \in NP, where

$$
\text { Satisfiability }=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\}
$$

A Boolean formula is an expression involving Boolean variables and operations, for example $(\bar{x} \wedge y) \vee(x \wedge \bar{z})$.
(b) A Boolean formula is in conjunctive normal form (CNF) if it is written as the conjunction of clauses, for example:

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee x_{6}\right) \wedge\left(x_{3}\right)
$$

Define the language:
$L=\{\langle\phi\rangle \mid \phi$ is a satisfiable CNF formula where each variable appears at most twice $\}$
Show that $L \in P$.
(c) For a CNF formula ϕ with m variables and c clauses, show you can construct in polynomial time an NFA with $O(\mathrm{~cm})$ states that accepts all nonsatisfying assignments, represented as binary strings of length m.
(This implies that if $P \neq N P$, then NFAs cannot be minimized in polynomial time.)
3. Show that if $\mathrm{P}=\mathrm{NP}$, a polynomial-time algorithm exists that produces a satisfying assignment when given a satisfiable Boolean formula.
Note: The algorithm you are being asked to write computes a function, but NP contains languages, not functions. The $\mathrm{P}=\mathrm{NP}$ assumption means that Satisfiability $\in \mathrm{P}$, so there is a deterministic polynomial-time Turing machine M_{SAT} which can test if a formula is satisfiable. You don't know how this test is done, but you may use $M_{\text {Sat }}$ in your algorithm.

