CS46 practice problems 10

These practice problems are an opportunity for discussion and trying many different solutions. It is **not counted towards your grade**, and **you do not have to submit your solutions.** The purpose of these problems is to get more comfortable with reasoning and writing proofs about decidability, recognizability, and co-recognizability.

If you are stumped or looking for guidance, ask.

- 1. Consider the language $L = \{ \langle M, w \rangle \mid M \text{ is a single-tape TM that never modifies the portion of the tape that contains the original input <math>w \}$.
 - (a) Show that L is co-Turing-recognizable, by briefly describing the elements of \overline{L} and then describing a recognizer for \overline{L} .
 - (b) Is L decidable? Prove your answer. Note that if you can show that L is Turing-recognizable, then you can apply Theorem 4.22 and part (a) to show L is decidable.
- For each of the following languages, review if the language is decidable, Turing-recognizable, co-Turing-recognizable, or none of these. A_{DFA}, A_{CFG}, A_{TM}, E_{DFA}, E_{CFG}, E_{TM}, ALL_{DFA}, ALL_{CFG}, ALL_{TM}, EQ_{DFA}, EQ_{CFG}, EQ_{TM}.
- 3. Consider the language of Turing machines which only accept strings consisting of as and bs:

TargetGPA_{TM} = { $\langle M \rangle \mid M$ is a Turing machine and $L(M) \subseteq L((a \cup b)^*)$ }

Is this language regular? context-free? decidable? recognizable? co-recognizable?

You may consider these parts in any order. (Some orders will be more helpful than others.) Support your answer for each part with a proof!

4. Consider the language of deciders:

$$DECIDER_{TM} = \{ \langle M \rangle \mid M \text{ is a decider} \}$$

- (a) Recall that $L_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a Turing machine} \}$, so $\text{Decider}_{\text{TM}} \subseteq L_{\text{TM}}$. Does Rice's Theorem apply to $\text{Decider}_{\text{TM}}$?
- (b) Show that $DECIDER_{TM}$ is undecidable.
- (c) Show that DECIDER_{TM} is both not recognizable and not co-recognizable.

ONLY IF you finish problems 1-4, look at problem 5. The busy beaver problem is interesting, and famous, and challenging. It is also *much*, *much* more complicated than any problem I would *ever* ask on a homework or exam. It's here for your intellectual enjoyment!