Let's consider $P(\mathbb{N})$ - the powered of the
(collection of all subsets of N)
\rightarrow this is infinite: $\{1\},\{2\},\{3\},\{4\}, \cdots \cdot \in P(\mathbb{N})$
bijection f :

$$
\begin{aligned}
& 1 \rightarrow\{1\} \\
& 2 \rightarrow\{2\} \\
& 3 \rightarrow\{3\}
\end{aligned}
$$

seems like it has a problem: infinitely wavy sets of size l, so we never get to the

$$
\vdots \quad\{1,2\}
$$

$$
\{1,3\}
$$

Fact: $P(\mathbb{N})$ is uncountable.
Pf: (by contradiction) Asscme there exists a bijection $f: N \rightarrow P(N)$. Let's use f to list all of $P(\mathbb{N})$:

$$
\begin{aligned}
& f(1)=s_{1} \\
& f(2)=s_{2} \\
& f(3)=s_{3}
\end{aligned}
$$

We would like to find a contradiction by figuring out some set $D \leq \mathbb{N}$ which is not in this list.
So $D \in P(N)$ but D is not mapped onto by f_{1} so f is not onto, so f is not a bijection.

Let's define set D as follows: $D=\left\{i \in \mathbb{N} \mid i \notin S_{i}\right\}$.
Consider S_{1}.

$$
\begin{aligned}
& \text { If } \mid \in S_{1} \text {, so } \mid \notin D . \text { So } D \neq S_{1} \text {. } \\
& \text { if } 1 \notin S_{1} \text {, so } \mid \in D \text {. So } D \neq S_{1} \text {. }
\end{aligned}
$$

Similarly, $S_{2} \neq D$ (because of the muncher 2)
$S_{3} \neq D$ (because of the nember 3)

So we have a set $D \subseteq \mathbb{N}$ but D is not in our list! So f was not outo, so f was not a bijection.

This was another pt using DIAGONALIZATION (like when we showed \mathbb{R} is uncountable):

	1	2	3	4	\cdots	\cdots	
S_{1}	\checkmark	x	v	v		\cdots	
S_{2}	\times	x	x	v	\cdots	\cdots	
s_{3}	\checkmark	v	x	x	\cdots	-	
s_{4}	\times	x	v	v	\cdots		
\vdots							DIAGONAL!

\sum is a finite alphabet (Sigma)
\sum^{*} is the set of all strings over \sum
Def: A (ANGLAGE $L \subseteq \Sigma^{*}$ is a set of strings.
Def: Let M be a machine, then says" V ES"

$$
L(m)=\left\{\begin{array}{l}
\left.w \in \Sigma^{*} \mid M \text { accepts } w\right\} \\
M(m) \text { is the } \\
\text { language } A C C \in P R D \text { or } R \in C O G N I Z E
\end{array}\right.
$$

We say $L(m)$ is the language ACCEPRED or RECOGNIZED by M.
In this class, 5 . is finite.

What is $\left|\Sigma^{*}\right|$? definitely infinite, but countable (eg shaitlex order) Every computer program has a $\underset{\text { String }}{\text { finite description over some } \sum \text {. }}$
So thee are countably infinitely many programs (each is some string in Σ^{*}).
How many languages ane thees? Each language is $S \sum^{*}$ so $P\left(\Sigma^{*}\right)$ is the collection of all languages.

$$
\begin{aligned}
& \begin{array}{l}
\text { the set of } \\
\text { all programs }
\end{array}\left|\neq\left|\begin{array}{l}
\text { the set of } \\
\text { all languages }
\end{array}\right|\right. \\
& \text { q instable } \\
& \text { uncountable }
\end{aligned}
$$

So there are some (infinitely many!) languages not recognized by ANY program!

