Styles of proof:

- construction
eg. Does a thing X exist?
Answer: Yes, here is how to build it.

Thu: There exists an even number.
Pf (by construction):
2 is an even number.

- contradiction
- induction
- direct: just directly explain why the claim is true

Thu: If m and n are both perfect squares, then $m \cdot u$ is a perfect
Pf (direct): Suppose in and in are perfect squares.
Then there are some numbers x and y where $m=x^{2}$
So $m \cdot n=x^{2} \cdot y^{2}$ by sutsititing $<$
$=x \cdot x \cdot y \cdot y$ def of squaring
$=(x \cdot y) \cdot(x \cdot y)$ by math
$=(x \cdot y)^{2} \quad d f$ of squaing
This means $m \cdot n$ is also a perfect square.

Def: The CARDINALITY |S| of a set S is the number of elements it contains.
egg. $A=\{$ cats, dogs $\quad B=\{$ blue, purple\}

$$
\begin{array}{ll}
& |A|=2=|B| \\
\mathbb{N} \mid=\{1,2,3,4, \ldots .\} & |\mathbb{N}|=\text { infinite } \\
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\} & |\mathbb{Z}|=\text { infinite }
\end{array}
$$

Def: Two sets A and B have the same condinality $|A|=|B|$ if there is a function $f: A \rightarrow B$ which is $\underbrace{\text { one-to-one and onto }}_{\text {objection }}$. bijection

$$
f: \stackrel{B}{\text { cats }} \rightarrow \frac{B}{\text { dogs }} \longrightarrow \text { blue }
$$

$$
\underset{\text { dags } \longrightarrow \text { purple }}{\text { cats } \longrightarrow \text { blue }}
$$

Thu: $|\mathbb{N}|=|\mathbb{Z}|$
$N \underset{\sim}{1} \quad 2 \quad 3 \quad 4 \quad 5 \quad \cdots \cdots$

Pf: by construction: want to build a bijection $f: X \mid \rightarrow \mathbb{Z}$ $f: \frac{N}{1} \longrightarrow \frac{\mathbb{R}}{} \quad \frac{\text { ned to check : }}{} \quad \frac{1}{f}$ one-to-one? yes
$\begin{array}{ll}3 \longrightarrow & -1 \\ 4 \longrightarrow & 2 \\ 5\end{array}$
f onto? yes, we hit every element of Z

How about $\mathbb{R}^{\prime}!\quad \mathbb{R}=\{\ldots, 500, \pi, e, 6.758,1,1000.2, \ldots\}$ real numbers

$$
|\mathbb{R}|=\text { infinite }
$$

Thu: $|\mathbb{N}| \neq|\mathbb{R}|$
Pf: by contradiction: Assume that $|\mathbb{N}|=|\mathbb{R}|$ so there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$. Argue why this is impossible.
We can write out f :
$f: 1 \longrightarrow x_{1} \quad$ By assumption, f is onto
$2 \longrightarrow x_{2}$
so every real number is in the
$3 \longrightarrow x_{3}$ list $x_{1}, x_{2}, x_{3}, \ldots$. .
We will come up with a number $r \in \mathbb{R}$ which is not in this list.

Let's build $r=0 . \underset{\nearrow}{\boldsymbol{\pi}}$ LL S.....
pick a digit so that $r \neq x_{1}$
pick a digit so that $r \neq x_{2}$
and so on: r^{\prime} s it eth digit after the decimal is different from x_{i} 's $i^{\text {th }}$ digit after the decimal, so $r \neq x_{i}{ }_{3}$
So f does not ever map onto $r, r \in \mathbb{R}$, so fir not onto!

Some final thoughts:
If we draw there sets as a Ven diagram, it looks like:

Our "usual" intuition about subsets \& infinity doesn't always hold:
$\mathbb{N} \subset \mathbb{Z}, \mathbb{N}$ is a subset of \mathbb{Z} but same cardinality
$\mathbb{N} \subsetneq \mathbb{R}, \mathbb{N}$ is a subset of \mathbb{R} but different cardinality
As notation (if yore interested), to distinguish these two sizes of infinity we write:
$|\mathbb{N}|=|\mathbb{C}|=5 s_{0}$ "aleph nought"
$|\mathbb{R}|=\Omega \delta_{1}$ "aleph one"
\ldots and we dort know if these's a coudinality between these!

