
CS46 Homework 7
This homework is due at 11:59pm on Saturday, February 5. This is an 8-point homework. Note
the unusual deadline.

For this homework, you will work with a partner. It’s ok to discuss approaches at a high level
with other students, your discussions should be just with your partner. The only exception to this
rule is work you’ve done with another student while in lab. In this case, note who you’ve worked
with and what parts were solved during lab. Your partnership’s write-up and code is your own: do
not share it, and do not read other teams’ write-ups. If you use any out-of-class references (anything
except class notes, the textbook, or asking Lila), then you must cite these in your post-homework
survey. Please refer to the course webpage or directly ask any questions you have about this policy.

The main learning goal of this homework is to work with and think about Turing machines,
and to implement one algorithm related to context-free languages.

Part 1. Your solution to this part should be written using LATEX and submitted using github as
a .tex file. Write clear and unambiguous implementation-level Turing machine descriptions. Your
explanation of why and how a Turing machine works should be separate from your description of
that Turing machine. Give the Turing machine description first, then explain it separately.

Another Turing machine extension. Let’s consider an extension which gives a Turing
machine tape which is infinite in both directions. We keep everything else the same, and specify
that the input string is given on a tape which is blank everywhere else, with the read/write head
on the first character of the input. So the starting configuration on input w in state q0 looks like:

· · · t tq0w t t · · ·

Notice that now the tape head can always move left, no matter where it is.
Prove that Turing machines with doubly infinite tape are no more powerful than standard

Turing machines (that is, with singly-infinite tape).

Part 2. Your solution to this part should be written in python and submitted in your github
repository as a file called cnf.py.

Recognizing context-free languages. Now that we’re talking about computability and the
Church-Turing thesis, it seems reasonable to ask how these concepts align with our actual usage of
computers as they exist in the real world.

Recall that on lab 4 you implemented a program which checked whether a given NFA would
accept a given input string. This involved converting the nondeterminism into a deterministic ver-
sion, since the computers we work with everyday are deterministic. For context-free languages,
the connection is not obvious: how can we implement the nondeterminism of a PDA? How do we
know which generating rules to follow in a grammar? The good news: there is an algorithm to do
this for grammars in Chomsky normal form, and by theorem 2.9, every grammar can be converted
to Chomsky normal form! Reread Sipser pages 108-111 before you start this part.

Parsing Chomsky normal form: the algorithm. Given a grammar G in Chomsky Nor-
mal Form, and an input string w = w1w2 · · ·wn, we can design a polynomial time algorithm1 to
determine if w ∈ L(G). The basic idea is to compute for all substrings x = wi · · ·wj , i ≤ j of w

1Don’t worry if this terminology “polynomial time algorithm” is new to you, we will discuss it more in-depth in
a few weeks.

1

https://www.cs.swarthmore.edu/amelia/fontes/pollster/
https://www.cs.swarthmore.edu/amelia/fontes/pollster/

if there is some rule in G that generates x. Define Vi,i+s to be the set of all variables V ∈ G that
that can generate x. G can generate w if V1,n contains the start symbol S ∈ V .

Our algorithm for parsing strings computes the sets Vi,j for 1 ≤ i ≤ j ≤ n. The algorithm
proceeds in a series of rounds, where in each round, it considers substrings of length s, where
1 ≤ s ≤ n.

In the first round, the algorithm sets Vi,i to {A ∈ V | A→ wi is a rule in grammar G}.
For substrings longer than 1, the algorithm checks if the substring x = xi · · ·xi+s−1 can be

broken into two smaller pieces at some index k, so we have y = xi · · ·xk and z = xk+1 · · ·xi+s−1

such that there is a rule A → BC in the grammar where B ∈ Vi,k and C ∈ Vk+1,i+s−1. If such a
rule exists, we add A to Vi,i+s−1. After finishing all rounds, we just need to check if S ∈ V1,n.

A pseudocode summary is below. (For those who are interested, this is a rephrasing of the
dynamic programming algorithm given on Sipser page 291.)

canGenerate(G,w)

1 for i = 1 to n
2 add A to V [i, i] if there is a rule A→ wi

3 for s = 1 to n− 1
4 for i = 1 to n− s
5 for k = i to i + s− 1
6 if there is a rule A→ BC where B ∈ V [i, k] and C ∈ V [k + 1, i + s]
7 add A to V [i, i + s]
8 if S ∈ V [1, n]
9 return true

10 else return false

Write a program that determines if a string w is accepted by a grammar G given in Chomsky
normal form. Your program should take a CNF grammar and file containing test strings as input
and determine if each string can be generated by the grammar. Fill in the required parts of the
provided starter code in cnf.py.

The grammar format starts with a line containing the symbols of the alphabet separated by
spaces, a blank line, and then the grammar rules. The first rule lists the start symbol on the
left-hand side. The rule format is V : A B to indicate V → AB. Note that variables are separated
by spaces (so A1 is a single variable, not two variables). The empty string ε is represented as E.

Three example grammars are included in your repository. The first, grammar1.txt, is a
Chomsky normal form grammar generating our favorite {anbn}. It goes with the test string file
string1.txt. Sample output below:

$ more grammar1.txt

a b

S: E

S: A1 B

S: A B

A1: A S

A: a

B: b

2

$ python cnf.py grammar1.txt string1.txt

aabb: True

abab: False

a: False

aaaabbbb: True

ab: True

The second, grammar2.txt is a Chomsky normal form grammar generating expressions of bal-
anced parentheses. Its test string file is string2.txt.

$ more grammar2.txt

()

S: E

S: A1 B

S: A B

S: S S

A1: A S

A: (

B:)

$ python cnf.py grammar2.txt string2.txt

(): True

E: True

()(): True

(()()): True

)(: False

(((()): False

The third, grammar3.txt is a Chomsky normal form grammar generating {wwR | w ∈ {c, d}∗}.

$ more grammar3.txt

c d

S: E

S: C C1

S: D D1

S: C C

S: D D

C1: S C

D1: S D

C: c

D: d

$ python cnf.py grammar3.txt string3.txt

ccccc: False

cccc: True

3

E: True

cdcd: False

ccddddddcc: True

ccddcc: True

ddcdd: False

dd: True

4

