CS46 lab 2

This homework is due at 11:59PM on Sunday, January 30. Write your solution using IAT_EX . Submit this homework using **github**. This is a **10 point** homework.

This is an individual homework. It's ok to discuss approaches at a high level. In fact, I encourage you to discuss general strategies. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. Your write-up is your own. If you use any out-of-class references (anything except class notes, the textbook, or asking Lila), then you **must** cite these in your post-homework survey. Please refer to the course webpage or ask me any questions you have about this policy.

The main **learning goal** of this homework is to develop the skills to work with the notation and terminology about sets, and start thinking about DFAs.

- 1. For each of the following statements, indicate whether it is true or false:
 - (a) $\emptyset \in \emptyset$
 - (b) $\emptyset \subseteq \emptyset$
 - (c) $\emptyset \in \{\emptyset\}$
 - (d) $\emptyset \subseteq \{\emptyset\}$
 - (e) $\{\{\emptyset\}\} \subseteq \{\emptyset, \{\emptyset\}\}$
 - (f) $\{\{\emptyset\}\} \subseteq \{\{\emptyset, \{\emptyset\}\}\}\}$
- 2. Let Σ be an alphabet (a set of letters). We define Σ^* as the set of all strings using letters from Σ . Let \mathcal{C} be a collection of sets which are all subsets of Σ^* . We are given that $\Sigma^* \in \mathcal{C}$. Assume that \mathcal{C} is closed under the operation set difference. (So if $A \in \mathcal{C}$ and $B \in \mathcal{C}$, then $A \setminus B \in \mathcal{C}$.)

Using direct proof, show that:

- (a) If $A \in \mathcal{C}$, then $\overline{A} \in \mathcal{C}$. (\mathcal{C} is closed under complement.)
- (b) If $A \in \mathcal{C}$ and $B \in \mathcal{C}$, then $A \cap B \in \mathcal{C}$. (\mathcal{C} is closed under intersection.)
- (c) If $A \in \mathcal{C}$ and $B \in \mathcal{C}$, then $A \cup B \in \mathcal{C}$. (\mathcal{C} is closed under union.)

Your proofs should be fully formal, with all steps of explanation written out.

3. Write a concise English description of the language recognized by DFA M_1 .

Figure 1: DFA ${\cal M}_1$

4. Write a concise English description of the language recognized by DFA M_2 .

Figure 2: DFA M_2

5. Write a concise English description of the language recognized by DFA M_3 .

Figure 3: DFA M_3

- 6. (extra credit) Formally prove that $n^2 + n$ is divisible by 2 for all $n \in \mathbb{N}$ using induction.
- 7. (extra credit) Formally prove that $n^2 + n$ is divisible by 2 for all $n \in \mathbb{N}$ using direct proof.