CS46 Homework 12

This homework is due at 11:59pm on Wednesday, April 27. Note the unusual deadline! This is
a 14-point homework.

For this homework, you will work with a partner. It’s ok to discuss approaches at a high level,
but most of your discussions should just be with your partner. The only exception to this rule is
work you've done with another student while in lab. In this case, note who you’ve worked with
and what parts were solved during lab. Your partnership’s write-up should be your own: do not
share it, and do not read other people’s write-ups. Please refer to the course webpage or ask me
any questions you have about this policy.

1. Closure properties.

Prove that P is closed under concatenation.

(a)
(b)
(c)

)

(d) Prove that NP is closed under concatenation.

Prove that P is closed under complement.

Prove that NP is closed under union.

2. Is (almost) everything NP-complete?
Show that if P = NP, then every language A € P is NP-complete except A = ) and A = X*.

3. Vertex cover and independent set, again.

Recall that a vertex cover in a graph G is a subset of vertices where every edge of G has at
least one endpoint in the subset.

VERTEXCOVER = {(G, k) | G has a k-node vertex cover }

Theorem 7.44 says that VERTEXCOVER is NP-COMPLETE .

An independent set in a graph G is a subset of vertices with no edges between them.

INDEPENDENTSET = {(G, k) | G contains an independent set of k vertices }

We will show that INDEPENDENTSET is NP-COMPLETE .

(a) Prove that INDEPENDENTSET € NP.

(b) Prove that INDEPENDENTSET is NP-HARD .
(Hint: reduce from VERTEXCOVER . This is not the same direction you did in lab, but
you might be able to use the same idea as the core of your reduction.)

4. An NP-complete problem related to regular expressions.

A regular expression is *-free (pronounced “star-free”) if it does not include any Kleene stars,
so for example the regular expression “(1U0)00” is *-free but “0*(1 U 11)” is not *-free.

Consider the language:

L = {(R1, R2) | Ry and Ry are *-free regular expressions and L(R;) # L(R2)}

You will prove that L is NP-COMPLETE , using a reduction from SATISFIABILITY .



(a) Show that L € NP by giving a deterministic polynomial-time verifier and describing the
certificate (“extra information”) strings it uses to check membership in L. (Make sure
your verifier fits the definition of “verifier” correctly — in particular, you need to make
sure it can’t be tricked into accepting by a bad certificate!)

(b) Given a formula ¢ in conjunctive normal form, write a regular expression that matches
the language:
{w | w encodes a truth assignment for ¢}

(c) Given a set of n literals {a, as, ..., an}, consider the clause:
c=a1Vay V- --Vay
Write a regular expression that matches the language:

{w | w encodes a truth assignment which does not satisfy c}

(d) Given a formula ¢ in conjunctive normal form, write a regular expression that matches
the language:

{w | w encodes a truth assignment which does not satisfy ¢}

(Use part (c).)

(e) Use parts (b) and (d) to give a polynomial-time reduction from SATISFIABILITY to L.
Conclude that L is NP-cOMPLETE . (Hint: If you want to, you may assume throughout
this problem that formulas in SATISFIABILITY are always in conjunctive normal form.)

5. (extra credit) Show that if P N NP-HARD # (), then P = NP.

6. (extra credit) Does CONP = NP? Support your answer with a proof.



