
CS41 Lab 9:
polynomial-time verifiers and polynomial-time

reductions
In typical labs this semester, you’ll be working on a number of problems in groups of 3-4

students. You will not be handing in solutions; the primary purpose of these labs is to have a
low-pressure space to discuss algorithm design. However, it will be common to have some overlap
between lab exercises and homework sets.

This week, we’ve started to understand what makes some problems seemingly hard to compute.
In this lab, we’ll consider an easier problem of verifying that an algorithm’s answer is correct.
Recall that a decision problem is a problem that requires a yes or no answer. Alternatively, we
can describe decision problem as a set L Ď t0, 1u˚; think of L as the set of all yes inputs i.e., the
set of inputs x such that one should output yes on input x. Let |x| denote the length of x, in bits.

Consider this lab a success if you complete problems 1-2 and make progress on problem 3. Do
not feel the need to formally write up solutions.

1. Show that 3-Sat P NP-hard, by reducing from Sat.

SatďP 3-Sat

Given an instance X of Sat (i.e., a list of n variables and m clauses), you should create
an instance Y of 3-Sat (i.e., a list of n1 variables and m1 clauses, each clause having three
literals) such that Y P 3-Sat iff X P Sat.

2. Verifier Debugging. Recall the definition of a polynomial-time verifier:

Polynomial-time Verifiers. Call V an efficient verifier for a decision problem L if

(a) V is a polynomial-time algorithm that takes two inputs: x, and w.

(b) There is a polynomial function p such that for all strings x, x P L if and only if there
exists w such that |w| ď pp|x|q and V px,wq “ yes.

w is usually called the witness or certificate. Think of w as some proof that x P L.

For V to be a polynomial-time verifier, w must have size some polynomial of the input x. For
example, if x represents a graph with n vertices and m edges, the length of w could be n2 or
m3 or pn ` mq100 but not 2n.

Consider the Three-Coloring problem: Given G “ pV,Eq return yes iff the vertices in G
can be colored using at most three colors such that each edge pu, vq P E is bichromatic.

Consider the following verifier for Three-Coloring. The witness we request is a valid three
coloring of the undirected graph G “ pV,Eq, which is specified as a list of two-digit binary
strings w “ w1w2 . . . wk where we interpret

wi “

$

&

%

00, vertex i is colored blue
01, vertex i is colored green
10, vertex i is colored red

1

threeColoringVerifier(G “ pV,Eq, w)

1 for each wi in w
2 if wi “ 11
3 return no
4 for j from i ` 1 to lenpwq

5 if wi “ wj and pi, jq P E
6 return no
7 return yes

This verifier is not quite right.

(a) Give an example witness w and graph G which is not three-colorable, such that

threeColoringVerifierpG,wq “ yes

(b) Rewrite threeColoringVerifier so that it is a valid verifier for Three-Coloring.
Make sure you have convinced yourself that the entire definition of a polytime verifier
has been met!

3. You will show that Three-Coloring is NP-Complete. Before getting there, it will be
helpful to create some interesting three-colorable graphs. In all of the following exercises, you
are to create a three-colorable graph (say the colors are red, blue, green) with certain special
properties. The graphs you create should include three vertices marked a, b, c but can (and
often will) include other vertices. Except for the properties specified, these vertices should be
unconstrained. For example, unless the problem states that e.g. a cannot be red, it must be
possible to color the graph in such a way that a is red. (You may fix colors for other vertices,
just not a, b, c, and not in a way that constrains the colors of a, b, c.)

� Create a graph such that a, b, c all have different colors.

� Create a graph such that a, b, c all have the same color.

� Create a graph such that a, b, c do NOT all have the same color.

� Create a graph such that none of a, b, c can be green.

� Create a graph such that none of a, b, c are green, and they cannot all be blue.

4. Show that Three-Coloring P NP-complete. Hints: reduce from 3-Sat. Associate the
color red with True and the color blue with False.

In this problem, you will prove that Three-Coloring is NP-Complete.

(a) Consider the following verifier for Three-Coloring. The witness we request is a valid
three coloring of the undirected graph G “ pV,Eq, which is specified as a list of two-digit
binary strings w “ w1w2 . . . wk where we interpret

wi “

$

&

%

00, vertex i is colored blue
01, vertex i is colored green
10, vertex i is colored red

2

threeColoringVerifier(G “ pV,Eq, w)

1 for each wi in w
2 if wi “ 11
3 return no
4 for j from i ` 1 to |w|

5 if wi “ wj and pi, jq P E
6 return no
7 return yes

This verifier is not quite right.

Give an example witness w and graph G which is not three-colorable, such that

threeColoringVerifierpG,wq “ yes

(b) Rewrite threeColoringVerifier so that it is a valid verifier for Three-Coloring.

(c) Prove that Three-Coloring P NP.

(d) Given an input x for 3-Sat, create an input for Three-Coloring using the gadgets
below (Figures 1 through 5). For each clause in x, you should create a piece of the graph
G which will be an input for Three-Coloring.

Describe how to do this, and what the final graph G consists of. How is the satisfiability
of the clause related to the colorability of the piece of the graph?

Recall from lab that our gadgets are three-colorable graphs which include at least three
vertices marked a, b, c. Except for the specified property, the remaining vertices are
unconstrained. For example, unless the problem states that, e.g., a cannot be red, it
must be possible to color the graph in such a way that a is red. Colors for other vertices
may be fixed, just not a, b, c.

Figure 1: A graph such that a, b, c all have different colors.

a b

c

3

Figure 2: A graph such that a, b, c all have the same color.

a

b

c

Figure 3: A a graph such that a, b, c do NOT all have the same color.

a

b

c

Figure 4: A graph such that none of a, b, c can be green.

a
green

b

c

4

Figure 5: A graph such that none of a, b, c are green, and they cannot all be blue.

green

a b c

red

(e) Run the Three-Coloring algorithm on the input G you create, and output yes iff
the Three-Coloring algorithm outputs yes. Argue why this procedure gives you a
correct answer for 3-Sat. (Hint: Associate the color red with True and the color blue
with False.)

5

