
CS41 Lab 8
In typical labs this semester, you’ll be working on a number of problems in groups of 3-4

students. You will not be handing in solutions; the primary purpose of these labs is to have a
low-pressure space to discuss algorithm design. However, it will be common to have some overlap
between lab exercises and homework sets.

The learning goals of lab this week are (i) to understand how dynamic programming affects
runtime of algorithms in practice, and (ii) to continue to practice building DP algorithm design
skills. I encourage you to work on the first problem and then whichever problem looks interesting.

General Hints:

� Focus on the choice you might make to construct an optimal solution.

� Initially focus on the first two steps of the dynamic programming process. Don’t stress about
pseudocode until after you’ve solved all lab problems.

1. Testing RNA Substructure Implementations. Last week, we introduced the RNA
Substructure problem and developed an efficient algorithm for RNA Substructure that uses
dynamic programming. In this lab problem, you’ll see this solution in practice.

In /home/fontes/public/cs41/, you’ll find two executables: rna-A, and rna-B. One uses dy-
namic programming to solve the RNA Substructure problem, and one solves it without storing
solutions to overlapping subproblems in a table. Each implementation takes in the name of
a file containing a single string representing an RNA molecule, and returns the size of the
largest matching (following the RNA substructure rules discussed in class).

For this exercise, you’ll use the UNIX time command to examine the runtime of each imple-
mentation. For example, to measure how much time rna-A takes on input rna test data/test1,
execute

$ time /home/fontes/public/cs41/rna-A /home/fontes/public/cs41/rna test data/test1

(a) Using the test files in rna test data and your own test files, determine which program
uses dynamic programming and which does not.

(b) How large can inputs be? For both rna-A and rna-B, create input files of different
sizes and determine how large the input can be if the implementation must run in at
most 30 seconds.

(c) How does the runtime scale? Again for each implementation, create some test files
of different lengths, and measure the execution time and how it scales with the size of
the inputs. Use this to guess what the implementation’s runtime is. Is rna-A an O(n2)
algorithm? or O(n3) or O(n4)? O(2n)? Do the same for rna-B.

2. Backpack heist. You have been recruited as the expert algorithm designer for a team
planning an elaborate heist. As part of the heist, the team has scoped out a very fancy
mansion full of nefariously-obtained treasures. However, your team will only be able to sneak
out a single backpack of items during the heist.

1



You know that the backpack can hold a maximum weight of W > 0, and you have already
established the list of n items in the mansion {1, . . . , n} each with nonnegative weight wi ≥ 0.
Your task is to output a subset of items S ⊆ {1, . . . , n} such that

∑
i∈S wi is as large as

possible, subject to the overall weight limit
∑

i∈S wi ≤ W .

Design an analyze a dynamic program to solve this problem. Your algorithm should determine
(1) the actual weight of the backpack in the optimal case, and (2) which items to put in the
backpack. Your algorithm should run in O(nW ) time.

3. Longest Palindrome. Let Σ be a finite set called an alphabet.1 A palindrome is a string
which reads the same backwards and forwards. Let s be a string of characters from Σ and
let x ∈ Σ be some character. The reversal of s is denoted sR. Then the strings ssR (that is,
s concatenated with sR) and sxsR are both palindromes.

In the Longest Palindrome Problem, you’re given a string s of n characters from Σ and
must output the length of the longest palindrome that is a substring of s.

(a) Briefly describe a simple Θ(n3) algorithm that solves the longest palindrome problem.
Why is your algorithm Θ(n3)?

(b) Design an algorithm that uses dynamic programming to solve the longest palindrome
problem in less than n3 time.

1For example, Σ might be {0, 1} or {a, b, c, . . . , z}.

2


