
CS41 lab 5
In typical labs this semester, you’ll be working on a number of problems in groups of 3-4

students. You will not be handing in solutions; the primary purpose of these labs is to have a
low-pressure space to discuss algorithm design. However, it will be common to have some overlap
between lab exercises and homework sets. The goal of this lab session is to gain more experience
with algorithm design, particularly using directed graphs.

1. All-Pairs Shortest Paths. Design and analyze a polynomial-time algorithm that takes a
directed graph G = (V,E) and for all u, v ∈ V computes the length of the shortest u ⇝ v
path or determines that no such path exists. (The length of a path in an undirected graph is
equal to the number of edges in the path.)

2. Cycle Detection (K & T 3.2) Give an algorithm to detect whether a given undirected
graph contains a cycle. If the graph contains a cycle, then your algorithm should output a
cycle. Otherwise, your algorithm should output NO. Your runtime should be O(m+ n) for
a graph with m edges and n vertices.

Hint: Don’t forget edge cases. Don’t forget to return the cycle if one is detected.

3. In CS35, you likely saw the shortest path on weighted graphs problem. In this problem, each
edge e has an edge length ℓe, and the length of a path s ⇝ t is the sum of the edge lengths
along the path. Your goal is to find, for a specific start vertex, the length of the shortest
s⇝ v path for all vertices v.

Problem: Single-Source Shortest Paths

Inputs:

� a graph G = (V,E)

� for each edge e a positive edge length, ℓe

� a start vertex s ∈ V

Output: an array of distances d, where d[v] is the length of the shortest s⇝ v path.

Below is pseudocode for Dijkstra’s Algorithm, which finds the shortest path in a graph G
between a start vertex s and any other vertex. Dijkstra’s algorithm is greedy; the greedy
strategy is to pick the next not-yet-reached vertex that has shortest path from s.

Dijkstra(G, s, ℓ)

1 S = {s}.
2 d[s] = 0.
3 while S ̸= V
4 pick v ∈ V \ S to minimize mine=(u,v):u∈S d[u] + ℓe.

5 add v to S.
6 d[v] = d[u] + ℓe
7 Return d[. . .].

(a) Show that Dijkstra’s Algorithm solves the shortest path problem. (Hint: use the “stays
ahead” method.)

1



(b) What is the asymptotic running time of Dijkstra’s algorithm?
If you were to implement it (in, say, C++) what data structures would you need? Would
you need any additional data structures beyond structures you’ve seen from CS35? If
so, try to design an implementation for them.

Note: the pseudocode given above is high-level pseudocode. One reason why this is
high-level is because it doesn’t specify how to compute the edge e = (u, v) such that
u ∈ S that minimized d[u] + ℓe. You’ll need to understand how to compute this edge
efficiently in order to analyze the overall runtime.

2


