
CS41 Lab 10:
more verifiers and reductions

In typical labs this semester, you’ll be working on a number of problems in groups of 3-4 students.
You will not be handing in solutions; the primary purpose of these labs is to have a low-pressure
space to discuss algorithm design. However, it will be common to have some overlap between lab
exercises and homework sets.

1. Give polynomial-time verifiers for the following problems, none of which are known to have
polynomial-time algorithms.

(a) Independent-Set.

(b) Vertex-Cover.

(c) Sat.

(d) Factoring. Given numbers n, k written in binary, output yes iff n is divisible by d for
some 1 ă d ď k.

(e) Not-Factoring. Given numbers n, k written in binary, output yes iff n is NOT
divisible by d for any 1 ă d ď k.

Hint: The following problem is solvable1 in polynomial time:

Primes: Given a number n written in binary, output yes iff n is a prime number.

2. Multiple-Interval-Scheduling (K&T 8.14) In this problem, there is a machine that is
available to run jobs over some period of time, say 9AM to 5PM.

People submit jobs to run on the processor; the processor can only wok on one job at any
simgle point in time. However, in this problem, each job requires a set of intervals of time
during which it needs to use the machine. Thus, for example, one job could require the
processor from 10AM to 11AM and again from 2PM to 3PM. If you accept this job, it ties
up your machine during these two hours, but you could still accept jobs that need any other
time periods (including the hours from 11AM to 2PM).

Now, you’re given an integer k and a set of n jobs, each specified by a tset of time intervals,
and you want to answer the following question: is it possible to accept at least k of the jobs
so that no two of the accepted jobs have any overlap in time?

In this problem, you are to show that Multiple-Interval-Scheduling P NP-complete.
To assist you, we’ve broken down this problem into smaller parts:

(a) First, show that Multiple-Interval-Scheduling P NP.

(b) In the remaining two parts, you will reduce

Independent-SetďPMultiple-Interval-Scheduling .

1This actually wasn’t known until 2002, when Agrawal, Kayal, and Saxena created the AKS primality test. Kayal
and Saxena were undergraduates at IIT Kanpur at the time; Agrawal was their advisor.

1



Given input pG “ pV,Eq, kq for Independent-Set, create a valid input for Multiple-
Interval-Scheduling. First, divide the processor time window into m distinct and
disjoint intervals i1, . . . , im. Associate each interval ij with an edge ej . Next, create a
different job Jv for each vertex v P V . What set of time intervals should you pick for
job Jv?

(c) Finally, run the Multiple-Interval-Scheduling algorithm on the input you create,
and output yes iff theMultiple-Interval-Scheduling algorithm outputs yes. Argue
that the answer to Multiple-Interval-Scheduling gives you a correct answer to
Independent-Set.

2


