CS41 Homework 9

This homework is due at 11:59PM on Sunday, November 19. Write your solution using LATEX. Submit this homework using github as .tex file; the code should be in a file called prettyprint.py. This is a partnered homework. You should primarily be discussing problems with your homework partner.

It's ok to discuss approaches at a high level with others. However, you should not reveal specific details of a solution, nor should you show your written solution to anyone else. The only exception to this rule is work you've done with a lab teammate while in lab. In this case, note (in your homework submission poll) who you've worked with and what parts were solved during lab.

1. Optimization vs Decision Problems.

Recall that a decision problem requires a YES/NO answer, and an optimization problem requires the "best possible answer", which often means maximizing or minimizing over some cost or score.
For most optimization problems, there is an obvious analogue as a decision problem. For example, consider the following problem:

VC-Opt: Given a graph $G=(V, E)$, return the size of the smallest vertex cover in G.

The problem VC-Opt has a natural decision problem, namely Vertex-Cover.
Vertex-Cover: Given a graph $G=(V, E)$ and an integer k, is there a vertex cover of G of size at most k ?

In fact, every optimization problem can be converted to a decision problem in this way.
(a) Show that Vertex-Cover $\leqslant \mathrm{p}$ VC-Opt.
(b) Let B be an arbitrary optimization problem, and let A be the decision version of B. Show that

$$
A \leqslant \mathrm{p} B .
$$

In order to show that $A \leqslant \mathrm{p} B$, you will need to:

- Describe an algorithm for A that uses a black box for B as a subroutine.
- Argue that your algorithm only does polynomially much work, only calls the box for B polynomially many times.
- Argue that your algorithm is a correct algorithm that solves problem A.
(c) Show that VC-Opt $\leqslant \mathrm{p}$ Vertex-Cover.

2. In this problem, you will prove that Three-Coloring is NP-complete. You have already worked on several pieces of this problem in lab, so you should definitely use that work and not start from scratch.

Three-Coloring: Given $G=(V, E)$, return Yes iff the vertices in G can be colored, using at most three colors, such that each edge $(u, v) \in E$ is bichromatic.
(a) Prove that Three-Coloring \in NP.
(b) Given an input x for 3-Sat, create an input for Three-Coloring using the gadgets below (Figures 1 through 5). For each clause in x, you should create a piece of the graph G which will be an input for Three-Coloring.
Describe how to do this, and what the final graph G consists of. How is the satisfiability of the clause related to the colorability of the piece of the graph?
Recall from lab that our gadgets are three-colorable graphs which include at least three vertices marked a, b, c. Except for the specified property, the remaining vertices are unconstrained. For example, unless the problem states that, e.g., a cannot be red, it must be possible to color the graph in such a way that a is red. Colors for other vertices may be fixed, just not a, b, c.

Figure 1: A graph such that a, b, c all have different colors.

Figure 2: A graph such that a, b, c all have the same color.

Figure 3: A a graph such that a, b, c do $N O T$ all have the same color.

Figure 4: A graph such that none of a, b, c can be green.

Figure 5: A graph such that none of a, b, c are green, and they cannot all be blue.

(c) Run the Three-Coloring algorithm on the input G you create, and output yes iff the Three-Coloring algorithm outputs yes. Argue why this procedure gives you a
correct answer for 3-Sat. (Hint: Associate the color red with True and the color blue with False.)
3. Other coloring problems. It is natural to wonder whether there is something special about the 3 in Three-Coloring that makes it such a hard problem.
(a) In the Two-Coloring problem, the input is a graph $G=(V, E)$, and you should output YES iff the vertices in G can be colored using at most two colors such that each edge $\{u, v\} \in E$ is bichromatic. Prove that Two-Coloring $\in \mathrm{P}$.
(Hint: look at your notes from earlier in the semester.)
(b) In the Four-Coloring problem, the input is a graph $G=(V, E)$, and you should output YES iff the vertices in G can be colored using at most four colors such that each edge $\{u, v\} \in E$ is bichromatic. Prove that Four-Coloring \in NP-complete.
(Hint: for your reduction, you can pick any NP-COMPLETE problem, but some will make your life easier. Try to do a reduction from a very similar problem.)

