CS41 Homework 7

This homework is due at 11:59PM on Sunday, November 2. This is a 13-point homework. Write
your solution using I¥TEX. Submit this homework using github as a .tex file. This is a partnered
homework. You should primarily be discussing problems with your homework partner.

It’s ok to discuss approaches at a high level with others. However, you should not reveal specific
details of a solution, nor should you show your written solution to anyone else. The only exception
to this rule is work you've done with a lab teammate while in lab. In this case, note (in your
homework submission poll) who you’ve worked with and what parts were solved during lab.

Any time you are asked for an algorithm, you should of course include a description of your
algorithm, a proof of correctness, and a runtime (including halting!) analysis. This instruction
holds for homeworks for the entire semester (unless the problem specifically says you do not
need to include those proofs).

1. Can this graph exist? (Kleinberg and Tardos, 4.29)
The degree of a node in an undirected graph is the number of edges it has. (For example, a
node with only one neighbor has degree 1, and the root of a binary tree has degree 2.)

Given a list of n natural numbers di,ds, ..., d,, give an efficient algorithm which can decide
whether there exists an undirected graph G = (V| E) whose node degrees are precisely the
numbers dy, da, . .., dy. (Thatis, if V' = {v1,vs,...,v,} then the degree of v; should be exactly
d;.) G should not contain multiple edges between the same pair of nodes (e.g. e = {u,v} #
¢’ = {u,v}), or “loop” edges {u,u} where both endpoints are the same node. Prove that your
algorithm is correct.

2. Summer camp triathlon (K& T 4.6)

Your friend is working as a camp counselor, and is in charge of organizing activities for a set
of junior-high-school-age campers. One of the plans is the following mini-triathlon exercise:
each contestant must swim 20 laps of a pool, then bike 10 miles, then run 3 miles. The plan
is to send the contestants out in a staggered fashion, via the following rule: the contestants
must use the pool one at a time. (In other words, first one contestant swims the 20 laps,
gets out, and starts biking. As soon as this person is out of the pool, a second contestant
begins swimming the 20 laps; as soon as the second person is out and starts biking, a third
contestant begins swimming, and so on.)

Each contestant has a projected swimming time (the expected time it will take them to
complete the 20 laps), a projected biking time (the expected time it will take them to complete
the 10 miles of bicycling), and a projected running time (the expected time it will take them
to complete the 3 miles of running). Your friend wants to decide on a schedule for the
triathalon: an order in which to sequence the starts of the contestants. Let’s say that the
completion time of a schedule is the earliest time at which all contestants will be finished with
all three legs of the triathalon, assuming they each spend exactly their projected swimming,
biking, and running times on the three parts. (Again, note that participants can bike and run
simultaneously, but at most one person can be in the pool at any time.) What’s the best order
for sending people out, if one wants the whole competition to be over as early as possible?



More precisely, give an efficient algorithm that produces a schedule whose completion time is
as small as possible.
. Finding the minimum in a tree

Consider an n-node complete binary tree T, where n = 2" — 1 for some h. Each node v in
T is labeled with a unique real number x,. A node v in T is a local minimum if for all
neighbors w of v, we have x, < z,. For example, in the tree below, 5 is a local minimum,
because its neighbors all have higher values (7,9,11).

Access to vertex labels is restricted; you can only see the node labels by probing the node.
Your goal is to find a local minimum using the fewest number of probes possible.

Given a complete binary tree T', design an algorithm FINDMIN(T) to find a local minimum
using O(log(n)) probes to the nodes of T'.
. Integer multiplication: further improvements?
Recall the Karatsuba algorithm for integer multiplication for class, which multiplies two n-
digit base-N numbers a, b by:
a-b=(arN"? +a,)(bpN™? + br)
= CLLbLNn + (CLLbR + CLRbL)Nn/2 + CLRbR
= AN™ + (C — A— B)N"? 4+ B,

where the three (n/2)-digit multiplications are:

e A=uay by
e B=ap-bgr
o C = (ar +agr)- (b +br)

Consider an algorithm for integer multiplication of two n-digit base-IN numbers where each
number is split into three parts, each with n/3 digits.



(a)

Design such an algorithm, similar to the integer multiplication we did in class. Your
algorithm should describe how to multiply two integers using only six multiplications
(instead of the straightforward nine).

Determine an asymptotic upper bound for the running time of your algorithm. (Write
it as a recurrence, and then solve the recurrence.) You should use partial substitution.

Is this algorithm asymptotically faster than Karatsuba multiplication? That is, is it
better to use the algorithm that breaks an integer into three parts, or two parts?

(extra challenge) Suppose there were an algorithm that used only five multiplications
of n/3-digit numbers instead of six. Determine an asymptotic upper bound for the
running time of such an algorithm. Would this algorithm be asymptotically faster than
Karatsuba multiplication?

5. (extra challenge) Making change

Consider the problem of making change for n cents out of the fewest number of coins. Assume
that n and the coin values are positive integers (cents).

(a)

Describe a greedy algorithm to solve the problem using the EU coin denominations of 50
cents, 20 cents, 10 cents, 5 cents, 2 cents, and 1 cent. Prove your algorithm is optimal.

Describe a greedy algorithm to solve the problem using the US coin denominations of
quarters (25), dimes (10), nickels (5), and pennies (1). Prove your algorithm is optimal.

Suppose the country of Algorithmland uses denominations that are powers of ¢ for some
integer ¢. This country uses k + 1 denominations of ¢?, ¢!, ..., c*. Show that your greedy
algorithm works in Algorithmland as well.

Design a currency system of your choosing with at least three coin denominations such
that a greedy algorithm does not yield a minimum number of coins for some amount of
m cents. Assume that one of your denominations has value one, so a solution exists for
all values of m.



