
CS41 Homework 3

This homework is due at 11:59PM on Sunday, September 24. Write your solution using LATEX.
Submit this homework in a file named hw3.tex using github. This is an individual homework.
It’s ok to discuss approaches at a high level. In fact, I encourage you to discuss general strategies.
However, you should not reveal specific details of a solution, nor should you show your written
solution to anyone else. The only exception to this rule is work you’ve done with a lab partner/group
while in lab. In this case, note (in your post-homework survey) who you’ve worked with and what
parts were solved during lab.

The main learning goals of this homework assignment are to (1) practice algorithmic design
and analysis skills, and (2) get comfortable using the formal definition of big-O.

1. College Choice. A group of n high school seniors S = {s1, s2, s3, . . . , sn} are touring a set
of colleges C = {c1, . . . , cn} over the course of m ≥ n days this autumn. Each student sj has
an itinerary where they individually decide to visit one college per day (or maybe take a day
off if m > n). However, these students are fiercely independent and prefer not to share college
campus tours with other students. Furthermore, each student is looking for one college to call
their own. Each student s would like to choose a particular day ds and stay at their current
college admissions office for the remaining m− ds days of the autumn (laying claim to 100%
of the admissions officer’s time). Of course, this means that no other students can visit cs
after day ds, since students don’t like sharing.

Show that no matter what the students’ itineraries are, it is possible to assign each student
s a unique college cs, such that when s arrives at cs according to the itinerary for s, all
other students s′ have either stopped touring colleges themselves, or s′ will not visit cs after
s arrives at cs. Describe an algorithm to find this matching.

Hint: The input is somewhat like the input to stable matching, but at least one piece is
missing. Find a clever way to construct the missing piece(s), run stable matching, and show
that the final result solves this problem. (This hint means: build your solution as a
reduction, using the Gale-Shapley algorithm as a black-box subroutine!)

F.A.Q. What about ties? It may be necessary to break ties; i.e., two students might
choose to visit the same college on the same day. You may assume that the tie can be broken
by having students arrive at different times of the day such that if s and s′ both want to
visit c on the same day, that there is some timestamp on their visits such that it is easy to
determine who arrived at c first. Thus, for any given day, at any given college, there is a
well-defined ordering to the planned arrival time of the students.

2. Asymptotic analysis. Arrange the following functions in ascending order of growth rate.
That is, if g follows f in your list, then it should be the case that f(n) is O(g).

� f1(n) = n2.5

� f2(n) =
√
2n

� f3(n) = n+ 10

� f4(n) = 10n

� f5(n) = 100n

� f6(n) = log1.1(n)
3
√
n

� f7(n) = nn

� f8(n) = n2 log2(n)

� f9(n) = nlog2(n)

No proofs are necessary, just give an ordering.
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3. Analysis. Let f(n) = 4n5/3 and g(n) = n5/4(log n)7. Prove that g(n) = O(f(n)). You
may use techniques and facts from class and the textbook; your proof should be formal and
complete.

4. Close to sorted. Say that a list of numbers is “k-close-to-sorted” if each number in the
list is less than k positions from its actual place in the sorted order. (So a 1-close-to-sorted
list is actually sorted.) Give an O(n log k) algorithm for sorting a list of numbers that is
k-close-to-sorted.

In your algorithm, you may use any data structure or algorithm from CS35 by name, without
describing how it works.

In your analysis, you may use the CS35 analysis of any CS35 data structure or algorithm that
you cited (and you do not need to recreate how it works).

However, you should make sure that you analyze your algorithm and write a convincing proof
that it halts, is correct, and runs in O(n log k) time. “Give an algorithm” means “. . . and a
rigorous analysis!”

5. Extra challenge. Define a function f : N → R≥0 such that f is O(g) for all exponential
functions g, but f is not O(h) for any polynomial function h.

6. Extra challenge. Is it possible to have two functions f and g such that f is not O(g) and
g is not O(f)? If so, give two example functions with this behavior; if not, prove that it is
impossible for this to happen.
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