Worksheet Class 2-3: HTTP and Socket Programming

reguest line

(GET, POST, D
HEAD, etc. commands)

header
lines

carriage return,
line feed appear
twice

HTTP/1.1 200 OK\r\n

Vary: Accept-Encoding\r\n
Content-Type: text/htmI\r\n
Accept-Ranges: bytes\r\n

Last-Modified: Wed, 04 Jan 2017 17:47:31 GMT\r\n

Content-Length: 1062\r\n

Date: Wed, 05 Sep 2018 17:27:34 GMT\r\n
Server: lighttpd/1.4.35\r\n

\r\n

<body of response>

carriage return character
/*” line-feed character
/

GET findex.html HTTP/1.1%r'\n
Host: web.cs.swarthmore.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xmi\r\n
Accept-Language: en-us,en;q=0.5\r\\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: I1S0O-8859-1,utf-8;g=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n

\r\un

Response
headers

Q1. We have these \r\n (CRLF) things all over the place.
(a) Are all of them necessary? What would happen if we didn’t have any of them?

(b) How might we delineate messages in HTTP? Discuss the pros and cons of each protocol design
a. There’s no way to delineate messages
b. The way it’s currently done is using

c. Force all messages to be the same size
d. Send the message size prior to the message
e. Some other way (discuss)

Q2. Let’s say HTTP was not a text-based protocol, but a binary protocol.

(a) Would we still be able to use CRLFs? Why or why not?
(b) We talked about header sizes in relation to the payload size of a packet last week. Do you see any
advantage of a binary protocol

Socket Programming Questions

Server Client If the client sends a

. GET request to the
| socket() | ’ socket() Lg server using Sendﬂ but

¥ forgets to send the last
bind() /r/n which of the
i ?
following can happen?
accept() "_)l connect() | A. Server, Client both recv()
. 11-..\ ’l‘ - B. Server send()s,
| ’Ei”'”” |<_ SET[’ Client recv()s
[" }_)[] C. Server recv()s,
E'E”J: Y mi'”” Client send()s

D. Some other combination

closel() close()

Discuss your choice of answer here:

What should we do if the receive socket buffer is
empty? Ifithas 100 bytes?

For each Process

(int sock = socket[AF_INET, SOCK_STREAM, O); r_buf (size 200)
(assume we connect()ed here...) I_I_'_H_'_H_H_I
int recy_val = recv(sock, r_buf, 200, 0);
L
Two Scenarios:
Empty 100 Bytes Socket buffer
A Block Block | | | | | |
B Block Copy 100 bytes Empty
C| Copy0bytes Block
D CopyObytes | Copy 100 bytes m 100 bytes
E | Something else
Kernel

Your answer here:

What should we do if the receive socket buffer is
empty? Ifithas 100 bytes?

For each Process

(int sock = socket{AF_INET, SOCK_STREAM, O); r_buf (size 200)

{assume we connect(jed here...) |_|_*_H_|_+_I_H_I
int recv_val = recw(sock, r_buf, 200, 0);
\ J
Twao Scenarios:

Empty 100 Bytes Socket buffer)
A Block Block | | | | | | E
B Black Copy 100 bytes mpty
€| Copy0 bytes Block
D| CopyObytes | Copy 100 bytes m 100 bytes
E | Something else _‘)
Kernel

Your answer here:

ALWAYS check send() and recv()'s retum value!

* When send() /recv() return value is less than the data
size, you are responsible for sending/receiving the
rest.

Data to send: 130
m send(sock, data, 130, 0);

Data sent: 60 Data: w H

Data to send: 130
// what should your next send call look like?
send(...)

Write in your next send() call here assuming that the first call to send() has successfully sent 60 out of 130
bytes.

