
CS 43: Computer Networks

20: Routing Algorithms
November 21 2024

Adapted from Slides by:  J.Kurose,  D. Choffnes, K. Webb



Network Layer

Application: HTTP

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 2

• Function: Route packets end-to-end on a network, through multiple 
hops



Network Layer Functions

• Forwarding: move packets from router’s input to appropriate router 
output
– Look up in a table

• Routing: determine route taken by packets from source to 
destination.

– Populating the table

Slide 3



1

23

IP destination address in 
arriving packet’s header

routing algorithm

local forwarding table
dest address output  link

address-range 1
address-range 2
address-range 3
address-range 4

3
2
2
1

Interplay between routing, forwarding

routing algorithm determines
end-end-path through network

forwarding table determines
local forwarding at this router

Slide 4



Routing

Traditional
• Routers run a routing protocol to 

exchange state.

• Use state to build up the forwarding 
table.

Software-Defined
• Routers are dumb, just do what they’re 

told.

• Controller service explicitly tells each 
router what to do.

• Rare on the Internet, hot topic in data 
centers.

Slide 5



Software-Defined Networking (SDN)

Traditional Hardware SDN Hardware

Controller

You Can’t read this, it’s 
too small!  Seriously, 

stop trying to read this, 
more important things 

are happening 
elsewhere!

You Can’t read this, it’s 
too small!  Seriously, 

stop trying to read this, 
more important things 

are happening 
elsewhere!

Left
Right
Right 
Right 

Slide 6



u

yx

wv

z

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph Abstraction

Slide 7



Graph Abstraction

c(x,x’) = cost of link (x,x’)
      e.g., c(w,z) = 5

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)  

Key question: what is the least-cost path between u and z ?
Routing algorithm: algorithm that finds that least cost path

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Slide 8



How should link costs be determined?

A. They should all be equal.

B. They should be a function of link capacity.

C. They should take current traffic characteristics into account (congestion, 
delay, etc.).

D. They should be manually determined by network administrators.

E. They should be determined in some other way.

Slide 9



How should link costs be determined?

A. They should all be equal.

B. They should be a function of link capacity.

C. They should take current traffic characteristics into account (congestion, delay, 
etc.). Time-scales of these events are too short, for us to recompute routes every 
time.

D. They should be manually determined by network administrators. This is done 
when there are policy decisions to be made, that are unique to each administrative 
domain.  

E. They should be determined in some other way.



Link Cost

• Typically simple: all links are equal

• Least-cost paths => shortest paths (hop count)

• Network operators add policy exceptions
– Lower operational costs
– Peering agreements
– Security concerns

Slide 11



• How to choose best path?
– Defining “best” can be slippery

• How to scale to millions of users?
– Minimize control messages and routing table size

• How to adapt quickly to failures or changes?
– Node and link failures, plus message loss

Routing Challenges

Slide 12



How much information should a router know 
about the network?

A. The next hop and cost of forwarding 
to its neighbor(s).

B. The next hop and cost of forwarding 
to any destination.

C. The status and cost of every link in 
the network.

D. Some other amount of information.

Less state.

Better decisions.

Slide 13



Routing Table?

• At a minimum, the routing table at U needs to know 
the next hop for each possible destination.

• Probably want more info (e.g., path cost)

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Dest Next Hop

V V

X X

W X

Y X

Z X

Slide 14



Routing Table

• At a minimum, the routing table at U needs to know the next 
hop for each possible destination.

• Probably want more info (e.g., path cost, maybe path itself)

• This is a key difference between routing & forwarding!

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Dest Next Hop Cost (Path)

V V 2

X X 1

W X 4

Y X 2

Z X 4

Slide 15



Routing algorithm classification

Network Layer: 5-16
global or decentralized information?

global: all routers have complete 
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes change 
more quickly
• periodic updates or in 

response to link cost 
changes

static: routes change 
slowly over time



Routing Algorithm Classes

Link State (Global)
• Routers maintain cost of each link in 

the network.

• Connectivity/cost changes flooded to 
all routers.

• Converges quickly (less inconsistency, 
looping, etc.).

• Limited network sizes.

Distance Vector (Decentralized)
• Routers maintain next hop & 

cost of each destination.

• Connectivity/cost changes 
iteratively propagate from 
neighbor to neighbor.

• Requires multiple rounds to 
converge.

• Scales to large networks.
Slide 17



• Routers transmit Link State Advertisement (LSA) on links
– A neighboring router forwards out all links except incoming
– Keep a copy locally; don’t forward previously-seen LSAs

• Challenges
– Packet loss
– Out-of-order arrival

• Solutions
– Acknowledgments and retransmissions
– Sequence numbers
– Time-to-live for each packet

Flooding LSAs

Slide 18



Dijkstra’s link-state routing algorithm

§ centralized: network topology, link costs known to all nodes
• accomplished via “link state broadcast” 
• all nodes have same info

§ computes least cost paths from one node (“source”) to all other 
nodes
• gives forwarding table for that node

§ iterative: after k iterations, know least cost path to k destinations



• LSA generated by X at T=0

X A

C B D

T=0
X A

C B D

T=1

X A

C B D

T=2
X A

C B D

T=3

Flooding Example

Slide 20



Dijkstra’s Algorithm

1  Initialization: 
2    N' = {u} 
3    for all nodes v 
4      if v adjacent to u 
5          then D(v) = c(u,v) 
6      else D(v) = ∞ 

Nodes we’ve determined lowest-cost 
path for already.

Best known cost for reaching 
node v.

Slide 21



Dijkstra’s Algorithm

Only know best route to self so far.

For every other router, set it’s known 
distance to link cost if it’s a neighbor.  
Otherwise, set it to infinity.

Slide 22

1  Initialization: 
2    N' = {u} 
3    for all nodes v 
4      if v adjacent to u 
5          then D(v) = c(u,v) 
6      else D(v) = ∞ 



Dijkstra’s Algorithm

1  Initialization: 
2    N' = {u} 
3    for all nodes v 
4      if v adjacent to u 
5          then D(v) = c(u,v) 
6      else D(v) = ∞ 
7 
8   Loop 
9     find w not in N' such that D(w) is a minimum 
10    add w to N' 
11    update D(v) for all v adjacent to w and not in N' : 
12       D(v) = min( D(v), D(w) + c(w,v) ) 
 /* new cost to v is either old cost to v or known 
           shortest path cost to w plus cost from w to v */ 
13  until all nodes in N' 

Pick the node (w) that isn’t already in N’ 
with the shortest distance (least cost 
path) and add it to N’.

Slide 23

Check all possible destinations from w.  
If going through w gives a lower cost to 
destination v, update D(v).



Dijkstra’s Algorithm Example

• Goal: From the perspective of node A:
– Determine shortest path to every destination

A

C

B

D

E F
5

2

1

4

2

10 4

5

Slide 24



Dijkstra’s Algorithm – Step 0

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A

B

C

D

E

F

Dest Path Cost D(v)

A A 0

B B 5

C C 2

D ? ∞

E ? ∞

F ? ∞

Previous Step This Step

Slide 25



Dijkstra’s Algorithm – Step 1

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B B 5

C C 2

D ? ∞

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B

C

D

E

F

Previous Step This Step

Pick
Min

Slide 26



Dijkstra’s Algorithm – Step 1

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B B 5

C C 2

D ? ∞

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B

C C 2

D

E

F

Previous Step This Step

Can we find lower cost 
to any other node by 
going through C?

Slide 27



Dijkstra’s Algorithm – Step 1

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B B 5

C C 2

D ? ∞

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B

C C 2

D

E

F

Previous Step This Step

Consider path to B:

D(B)
or
D(C) + cost(C, B)

Slide 28



Dijkstra’s Algorithm – Step 1

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B B 5

C C 2

D ? ∞

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D

E

F

Previous Step This Step

Consider path to B:

D(B) = 5
or
D(C) + cost(C, B)
2 + 1 = 3

Slide 29



Dijkstra’s Algorithm – Step 1

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B B 5

C C 2

D ? ∞

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, D 6

E

F

Previous Step This Step

Consider path to D:

D(D) = ∞
or
D(C) + cost(C, D)
2 + 4 = 6

Slide 30



Dijkstra’s Algorithm – Step 1

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B B 5

C C 2

D ? ∞

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, D 6

E ? ∞

F ? ∞

Previous Step This Step

Still no information 
about E or F.

Slide 31



Dijkstra’s Algorithm – Step 2

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, D 6

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D

E

F

Previous Step This Step

Pick
Min

Choose B.

Slide 32



Dijkstra’s Algorithm – Step 2

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, D 6

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E

F

Previous Step This Step

Consider path to D:

D(D) = 6
or
D(B) + cost(B, D)
3 + 2 = 5

Slide 33



Dijkstra’s Algorithm – Step 2

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, D 6

E ? ∞

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F ? ∞

Previous Step This Step

Consider path to E:

D(E) = ∞
or
D(B) + cost(B, E)
3 + 10 = 13

Slide 34



Dijkstra’s Algorithm – Step 3

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E

F

Previous Step This Step

Choose D.

Slide 35



Dijkstra’s Algorithm – Step 3

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F

Previous Step This Step

No change for E.

Slide 36



Dijkstra’s Algorithm – Step 3

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F ? ∞

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F C, B, D, F 10

Previous Step This Step

Consider path to F:

D(F) = ∞
or
D(D) + cost(D, F)
5 + 5 = 10

Slide 37



Dijkstra’s Algorithm – Step 4

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F C, B, D, F 10

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

F C, B, D, F 10

Previous Step This Step

Choose F.

Slide 38



Dijkstra’s Algorithm – Step 4

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F C, B, D, F 10

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F C, B, D, F 10

Previous Step This Step

Consider path to E:

D(E) = 13
or
D(F) + cost(F, E)
10 + 4 = 14

Slide 39



Dijkstra’s Algorithm – Step 5

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F C, B, D, F 10

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F C, B, D, F 10

Previous Step This Step

Choose E.

Slide 40



Dijkstra’s Algorithm – Done!

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F C, B, D, F 10

Final Answer

Dest Forward ToPopulate 
Forwarding 
Table

Forwarding Table

Lot more state
in routing table!

Slide 41



Dijkstra’s Algorithm – Done!

A

C

B

D

E F
5

2

1

4

2

10 4

5

Dest Path Cost D(v)

A A 0

B C, B 3

C C 2

D C, B, D 5

E C, B, E 13

F C, B, D, F 10

Final Answer

Dest Forward To

B C

C C

D C

E C

F C

Populate 
Forwarding 
Table

Forwarding Table

Lot more state
in routing table!

Slide 42



Dijkstra’s algorithm: computation complexity

algorithm complexity: n nodes
§ each of n iteration: need to check all nodes, w, not in N
§ n(n+1)/2 comparisons: O(n2) complexity
§ more efficient implementations possible: O(nlogn)

message complexity: 
§ each router must broadcast its link state information to other n routers 
§ efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a 

broadcast message from one source
§ each router’s message crosses O(n) links: overall message complexity: O(n2)



Link State - Summary

⁺ Fast convergence (reacts to events quickly)
⁺ Small window of inconsistency

⁻ Large number of messages sent on events
⁻ Large routing tables as network size grows

Slide 44



Routing Algorithm Classes

Link State (Global)
• Routers maintain cost of each link in 

the network.

• Connectivity/cost changes flooded to 
all routers.

• Converges quickly (less inconsistency, 
looping, etc.).

• Limited network sizes.

Distance Vector (Decentralized)
• Routers maintain next hop & 

cost of each destination.

• Connectivity/cost changes 
iteratively propagate from 
neighbor to neighbor.

• Requires multiple rounds to 
converge.

• Scales to large networks.
Slide 45



Bellman-Ford Equation

let
   dx(y) := cost of least-cost path from x to y
then

   dx(y) = min {c(x,v) + dv(y) }
   

v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y

Slide 46



Distance Vectors 

• Let Dx(y) = vector of least cost from x to y

• Node x:
– Knows cost to each neighbor v: c(x,v)
– Maintains its neighbors’ distance vectors.

For each neighbor v, x maintains: 
Dv = [Dv(y): y є N ]

• As opposed to link state:
– Only keeps state for yourself and direct neighbors

Slide 47



Distance vector algorithm:  

iterative, asynchronous: each local 
iteration caused by: 
§ local link cost change 
§ DV update message from neighbor

wait for (change in local link cost or 
msg from neighbor)

each node:

distributed, self-stopping: each 
node notifies neighbors only when 
its DV changes
§ neighbors then notify their 

neighbors – only if necessary
§ no notification received, no 

actions taken!

recompute my DV estimates using 
DV received from neighbor

if my DV to any destination has 
changed, send my new DV to my 

neighbors, else, do nothing



Distance Vector Example

• Same network as Dijkstra’s example, without node E.
• What I’ll show you next is routing table (of distance vectors) at each 

router.

A

C

B

D

F
5

2

1

4

2

14

5



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5

C 2

D

F

Via→
↓ To

B D

A

B 14

C

D 5

Via→
↓ To

A C D F

A 5

C 1

D 2

F 14

Via→
↓ To

A B D

A 2

B 1

D 4

F

Via→
↓ To

B C F

A

B 2

C 4

F 5

Router A Router B Router C Router D

Router F

Routers populate their forwarding table by taking the row minimum.

Distance Vector – Round 0



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5

C 2

D

F

Via→
↓ To

B D

A

B 14

C

D 5

Via→
↓ To

A C D F

A 5

C 1

D 2

F 14

Via→
↓ To

A B D

A 2

B 1

D 4

F

Via→
↓ To

B C F

A

B 2

C 4

F 5

Router A Router B Router C Router D

Router F

Router exchange their local vectors with direct neighbors.
We’ll assume they all exchange at once (synchronous).  (Not realistic)

Distance Vector – Round 0



A

C

B

D

F5

2

1

4

2

14

5

Via→
↓ To

B C

B 5

C 2

D

F

Via→
↓ To

B D

A

B 14

C

D 5

Via→
↓ To

A C D F

A 5

C 7 1

D 2

F 14

Via→
↓ To

A B D

A 2

B 1

D 4

F

Via→
↓ To

B C F

A

B 2

C 4

F 5

Router A Router B Router C Router D

Router F
B = 5
C = 2

Distance Vector – Round 1



A

C

B

D

F5

2

1

4

2

14

5

Via→
↓ To

B C

B 5

C 2

D

F

Via→
↓ To

B D

A

B 14

C

D 5

Via→
↓ To

A C D F

A 5

C 7 1

D 2

F 14

Via→
↓ To

A B D

A 2

B 7 1

D 4

F

Via→
↓ To

B C F

A

B 2

C 4

F 5

Router A Router B Router C Router D

Router F
B = 5
C = 2

Distance Vector – Round 1



Distance Vector – Round 1

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5

C 6 2

D 7

F 19

Via→
↓ To

B D

A

B 14

C

D 5

Via→
↓ To

A C D F

A 5

C 7 1

D 2

F 14

Via→
↓ To

A B D

A 2

B 7 1

D 4

F

Via→
↓ To

B C F

A

B 2

C 4

F 5

Router A Router B Router C Router D

Router F

A = 5, D = 2
C = 1, F = 14



Distance Vector – Round 1

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5

C 6 2

D 7

F 19

Via→
↓ To

B D

A

B 14

C

D 5

Via→
↓ To

A C D F

A 5

C 7 1

D 2

F 14

Via→
↓ To

A B D

A 2 6

B 7 1

D 3 4

F 15

Via→
↓ To

B C F

A

B 2

C 4

F 5

Router A Router B Router C Router D

Router F

A = 5, D = 2
C = 1, F = 14



Distance Vector – Round 1

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5

C 6 2

D 7

F 19

Via→
↓ To

B D

A

B 14

C

D 5

Via→
↓ To

A C D F

A 5

C 7 1

D 2

F 14

Via→
↓ To

A B D

A 2 6

B 7 1

D 3 4

F 15

Via→
↓ To

B C F

A 7

B 2

C 3 4

F 16 5

Router A Router B Router C Router D

Router F

A = 5, D = 2
C = 1, F = 14



Distance Vector – Round 1

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5

C 6 2

D 7

F 19

Via→
↓ To

B D

A 19

B 14

C 15

D 16 5

Via→
↓ To

A C D F

A 5

C 7 1

D 2

F 14

Via→
↓ To

A B D

A 2 6

B 7 1

D 3 4

F 15

Via→
↓ To

B C F

A 7

B 2

C 3 4

F 16 5

Router A Router B Router C Router D

Router F

A = 5, D = 2
C = 1, F = 14



Distance Vector – Round 1

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 19

Via→
↓ To

B D

A 19

B 14

C 15

D 16 5

Via→
↓ To

A C D F

A 5 3

C 7 1

D 5 2

F 14

Via→
↓ To

A B D

A 2 6

B 7 1

D 3 4

F 15

Via→
↓ To

B C F

A 7 6

B 2 5

C 3 4

F 16 5

Router A Router B Router C Router D

Router F

A = 2, D = 4
B = 1



Distance Vector – Round 1

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B D

A 19

B 14 7

C 15 9

D 16 5

Via→
↓ To

A B D

A 2 6

B 7 1 6

D 3 4

F 15 9

Router A Router B Router C Router D

Router F

B = 2, F = 5
C = 4

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 19

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2

F 7 14

Via→
↓ To

B C F

A 7 6

B 2 5

C 3 4

F 16 5



Distance Vector – Round 1

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B D

A 19

B 14 7

C 15 9

D 16 5

Via→
↓ To

A B D

A 2 6

B 7 1 6

D 3 4

F 15 9

Router A Router B Router C Router D

Router F

B = 14
D = 5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 19

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2 19

F 7 14

Via→
↓ To

B C F

A 7 6

B 2 5 19

C 3 4

F 16 5



Distance Vector – Round 1

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B D

A 19

B 14 7

C 15 9

D 16 5

Via→
↓ To

A B D

A 2 6

B 7 1 6

D 3 4

F 15 9

Router A Router B Router C Router D

Router F

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 19

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2 19

F 7 14

Via→
↓ To

B C F

A 7 6

B 2 5 19

C 3 4

F 16 5



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 19

Via→
↓ To

B D

A 19

B 14 7

C 15 9

D 16 5

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2 19

F 7 14

Via→
↓ To

A B D

A 2 6

B 7 1 6

D 3 4

F 15 9

Via→
↓ To

B C F

A 7 6

B 2 5 19

C 3 4

F 16 5

Router A Router B Router C Router D

Router F

Distance Vector – End of Round 1



At the end of round 1, how many routers need to 
update their forwarding tables?

A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 19

Via→
↓ To

B D

A 19

B 14 7

C 15 9

D 16 5

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2 19

F 7 14

Via→
↓ To

A B D

A 2 6

B 7 1 6

D 3 4

F 15 9

Via→
↓ To

B C F

A 7 6

B 2 5 19

C 3 4

F 16 5

Router A Router B Router C Router D

Router F

A – 1,  B – 2,  C – 3,  D – 4,  E – 5



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 19

Via→
↓ To

B D

A 19

B 14 7

C 15 9

D 16 5

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2 19

F 7 14

Via→
↓ To

A B D

A 2 6

B 7 1 6

D 3 4

F 15 9

Via→
↓ To

B C F

A 7 6

B 2 5 19

C 3 4

F 16 5

Router A Router B Router C Router D

Router F

Each router advertises the best cost it has to each destination.
Nothing new to learn from A or F, so we’ll skip their announcements.

Distance Vector – Round 2



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 4? 2

D 5 6

F 10

Via→
↓ To

B D

A 10

B 14 7

C 8 9

D 9? 5

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2 19

F 7 14

Via→
↓ To

A B D

A 2 4?

B 7 1 6

D 3 4

F 8 9

Via→
↓ To

B C F

A 5 6

B 2 5 19

C 3 4

F 9? 5

Router A Router B Router C Router D

Router F

A = 3, D = 2
C = 1, F = 7

Distance Vector – Round 2



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 4? 2

D 5 5

F 10 11

Via→
↓ To

B D

A 10

B 14 7

C 8 9

D 9? 5

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 4? 2 19

F 10 7 14

Via→
↓ To

A B D

A 2 4?

B 7 1 6

D 3 4

F 8 9

Via→
↓ To

B C F

A 5 5

B 2 4? 19

C 3

F 9? 12? 5

Router A Router B Router C Router D

Router F

A = 2, D = 3
B = 1, F = 9

Distance Vector – Round 2



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 4? 2

D 5 5

F 10 11

Via→
↓ To

B D

A 10

B 14 7

C 8 9

D 9? 5

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 4? 2 19

F 10 7 14

Via→
↓ To

A B D

A 2 4?

B 7 1 6

D 3 4

F 8 9

Via→
↓ To

B C F

A 5 5

B 2 4? 19

C 3

F 9? 12? 5

Router A Router B Router C Router D

Router F

A = 2, D = 3
B = 1, F = 9

Distance Vector – Round 2



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 5

F 12 10

Via→
↓ To

B D

A 17 10

B 14 7

C 15 8

D 16 5

Via→
↓ To

A C D F

A 5 3 7 24

C 7 1 4 22

D 10 4 2 19

F 15 9 7 14

Via→
↓ To

A B D

A 2 4 9

B 7 1 6

D 7 3 4

F 12 8 9

Via→
↓ To

B C F

A 5 6 15

B 2 5 12

C 3 4 13

F 9 12 5

Router A Router B Router C Router D

Router F

Eventually, we reach a converged state.

Distance Vector – Convergence



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 5

F 12 10

Via→
↓ To

B D

A 17 10

B 14 7

C 15 8

D 16 5

Via→
↓ To

A C D F

A 5 3 7 24

C 7 1 4 22

D 10 4 2 19

F 15 9 7 14

Via→
↓ To

A B D

A 2 4 9

B 7 1 6

D 7 3 4

F 12 8 9

Via→
↓ To

B C F

A 5 6 15

B 2 5 12

C 3 4 13

F 9 12 5

Router A Router B Router C Router D

Router F

Final forwarding tables:

Distance Vector – Convergence



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 5

F 12 10

Via→
↓ To

B D

A 17 10

B 14 7

C 15 8

D 16 5

Via→
↓ To

A C D F

A 5 3 7 24

C 7 1 4 22

D 10 4 2 19

F 15 9 7 14

Via→
↓ To

A B D

A 2 4 9

B 7 1 6

D 7 3 4

F 12 8 9

Via→
↓ To

B C F

A 5 6 15

B 2 5 12

C 3 4 13

F 9 12 5

Router A Router B Router C Router D

Router F

A – 0, B – 1, C – 2, D – 3

Of the links in red below, for how many would a failure cause 
a loop?

Consider the failures independently 
(not all at the same time).



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 12

Via→
↓ To

B D

A 17

B 14 7

C 15 9

D 16 5

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2 19

F 7 14

Via→
↓ To

A B D

A 2 4?

B 7 1 6

D 3 4

F 8 9

Via→
↓ To

B C F

A 5 6

B 2 5 19

C 3 4

F 9? 5

Router A Router B Router C Router D

Router F

B will send to neighbors (A, C, D, F):
I can get to A in 3, C in 1, D in 2, and F in 7.

Rewind: Distance Vector – Round 2



A

C

B

D

F
5

2

1

4

2

14

5

Via→
↓ To

B C

B 5 3

C 6 2

D 7 6

F 12

Via→
↓ To

B D

A 17

B 14 7

C 15 9

D 16 5

Via→
↓ To

A C D F

A 5 3

C 7 1 6

D 5 2 19

F 7 14

Via→
↓ To

A B D

A 2 4?

B 7 1 6

D 3 4

F 8 9

Via→
↓ To

B C F

A 5 6

B 2 5 19

C 3 4

F 9? 5

Router A Router B Router C Router D

Router F

Poisoned reverse: Don’t advertise a lower value to a neighbor 
if you go through that neighbor to get there!

Rewind: Distance Vector – Round 2

No!
∞



Distance vector: link cost changes

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost 
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV.  y’s least costs do not 
change, so y does not send a message to z. 

link cost changes:
§ node detects local link cost change 
§ updates routing info, recalculates local DV
§ if DV changes, notify neighbors 

x z
14

50

y
1



Distance vector: link cost changes
link cost changes:
§ node detects local link cost change 
§ “bad news travels slow” – count-to-infinity problem:

x z
14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So 
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z  computes “my new cost to 
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y  computes “my new cost to 
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z  computes “my new cost to 
x will be 9 via y), notifies y of new cost of 9 to x.
…

§ see text for solutions.  Distributed algorithms are tricky!



Loop-prevention

• Route poisoning helps prevent loops, but doesn’t guarantee loop free.

• Other mechanisms help too

• There will always be a window of vulnerability



Comparison of LS and DV algorithms
message complexity

LS: n routers, O(n2) messages sent  
DV: exchange between neighbors; 

convergence time varies

speed of convergence
LS: O(n2) algorithm, O(n2) messages
• may have oscillations

DV: convergence time varies
• may have routing loops
• count-to-infinity problem

robustness: what happens if router 
malfunctions, or is compromised?

LS: 
• router can advertise incorrect link cost
• each router computes only its own 

table
DV:
• DV router can advertise incorrect path 

cost (“I have a really low-cost path to 
everywhere”): black-holing

• each router’s DV is used by others: 
error propagate through network



Summary

⁺ Fast convergence (reacts 
to events quickly)

⁺ Small window of 
inconsistency

⁻ Large number of 
messages sent on events

⁻ Large routing tables as 
network size grows

78

⁺ Distributed (small tables)
⁺ No flooding (fewer 

messages)

‒ Slower convergence
‒ Larger window of 

inconsistency

Link State Distance Vector


