CS 43: Computer Networks

16-17: The Network Layer November 7, November 12 2024

The Network Layer!

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1's and 0's/bits across a medium (copper, the air, fiber)

Network Layer

- DARPAnet Primary Goal: Connect Hosts
- "islands" of networks: SATNet, Packet Radio, Ethernet: how do we connect them?

- Routers forward packets using a common Internet Protocol
	- *Any* underlying data link protocol
	- *Any* higher layer transport protocol

History of Communication

Fire Beacons Carrier Pigeons Human Messengers Horse Relays – Pony Express

- Wireless telegraph
- speed of light
- compression
- limited information

The Telegraph

Telephone Network

Courtesy: Stanford University and the set of the set of

History of the Internet: ARPANET

4 NODES

Courtesy: Scientific American

ARPANET

- Connect academic computers together
- ARPANET Nodes: UCLA, SRI, UCSB, UTAH

First host-to-host protocol - two cross country links

Internet: A network of networks

- ARPANET
- NPLNET
- SATNET
- Packet radio networks
- Ethernet LAN

Network control protocol

Jan 1 1983: Flag Day Transition to TCP IP

Source: Wikimedia Commons

Slide 6

Pioneers of the early Internet

Packet Switched Networks

"Information Flow in Large Communication Nets"

Chief Protocol Architect of the Internet "The Design Philosophy of the DARPA Internet Protocols"

Swat Alum!

Cerf & Kahn: TCP/IP protocols Turing Award Winners

Vincent Cerf and Bob Kahn

Circuit Switching

• Reserve path in advance

• (Old) telephone system

Why doesn't the Internet (typically) use circuits?

- A. It's too slow to establish a connection.
- B. It doesn't offer good enough performance.
- C. It wastes resources.
- D. It requires too many resources.
- E. Some other reason.

Why doesn't the Internet (typically) use circuits?

- A. It's too slow to establish a connection
	- some setup state required but not prohibitively slow per connection but doesn't scale with growth of connections considering today's Internet applications)
- B. It doesn't offer good enough performance.
	- when the end-to-end path is reserved, you have dedicated line per connection.
- C. It wastes resources.
- D. It requires too many resources.
- E. Some other reason.

Packet Switching

- Do we always need to reserve a link?
- Statistical multiplexing
	- Assign multiple conversations to a physical path
	- At any given time, one will have something to say

Packet Switching: Statistical Multiplexing

- Data traffic is bursty
	- Telnet, email, Web browsing, …
- Avoid wasting bandwidth
	- One host can send more when others are idle

Which of the following is/are generally true of packet vs. circuit switching?

- 1. Packet switching has more variance in performance.
- 2. Circuit switching is reliable.

- A. Only 1 is true.
- B. Only 2 is true.
- C. Both 1 and 2 are true.
- D. Neither 1 nor 2 are true.

Which of the following is/are generally true of packet vs. circuit switching?

- 1. Packet switching has more variance in performance.
- 2. Circuit switching is reliable.

- A. Only 1 is true.
- B. Only 2 is true.
- C. Both 1 and 2 are true.
- D. Neither 1 nor 2 are true.

Circuit-switching vs. Packet switching $A \leftarrow \longrightarrow A$ B $A \leftarrow \longrightarrow A$ B B

- Circuit switching: establish path, send data
	- Reserve resources, provide performance control
	- Example: telephone system
- Packet switching: forward packets hop by hop
	- Fair sharing despite bursts, statistical multiplexing
	- Example: postal system

Datagram vs. "Virtual Circuit"

- Datagram network provides network-layer connectionless service (packet switching)
- Virtual-circuit network provides network-layer connection service (like circuit switching)

Virtual circuits: Signaling Protocols

- Used to setup, maintain, teardown VC
- Used in ATM (Asynchronous Transfer Mode), frame-
relay, X.25
- Less common in today's Internet

Datagram Networks

- No call setup at network layer
- Routers: no state about end-to-end connections
	- no network-level concept of "connection"
- Packets forwarded individually towards destination

Why doesn't the network layer do more?

Compress data Serve Cached Data Add Security Provide reliability Migrate connections the list is long

The End-to-End Principle

"The function in question can completely and correctly be implemented only with the knowledge and help of the application standing at the endpoints of the communication system."

- Saltzer, Reed and Clark

End-to-end Arguments in System Design, 1984

I.e. The network can help you – but only the application is responsible for correctness. No one else has the complete picture of the requirements. You can't depend on the network.

The End-to-End Principle

No checks for errors in storage! Network can help but can't be responsible for correctness.

Courtesy: Stanford Slide 22

The Strong End-to-End Principle

The network's job is to transmit datagrams as efficiently and flexibly as possible. Everything else should be done at the fringes.

-RFC 1958

Network Layer

- Function: Route packets end-to-end on a network, through multiple hops
- Key challenge
	- How to route packets: Convergence
	- How to represent addresses: Scalability

Example of Internet Routing

Network layer involved at every hop along the path.

Slide 25

Network Layer Functions

• Forwarding: move packets from router's input to appropriate router output ("data plane")

• Routing: determine route taken by packets from source to destination. ("control plane")

When should a router perform routing? Forwarding?

- A. Do both when a packet arrives.
- B. Route in advance, forward when a packet arrives.
- C. Forward in advance, route when a packet arrives.
- D. Do both in advance.
- E. Some other combination

When should a router perform routing? Forwarding?

Route in advance, forward when a packet arrives.

- Forwarding:
	- Copying bytes from one interface to another, can't forward in advance
	- forwarding needs to happen very quickly: millions of packets per second
- Routing:
	- High-level decision that we do dynamically, at different time-scales than forwarding
	- route in advance and populate a table to see where it is destined

Network Layer Functions

- Forwarding*:* move packets from router's input to appropriate router output
	- Look up in a table
- Routing: determine route taken by packets from source to destination.
	- Populating the table

Interplay between routing and forwarding

How should we populate a router's forwarding table?

- A. A person should add entries to the table.
- B. A program external to the router should add entries to the table.
- C. Routers should communicate with each other to add entries to their tables.
- D. Some other mechanism.

How should we populate a router's forwarding table?

- A. A person should add entries to the table (policy decisions).
- B. A program external to the router should add entries to the table (Software defined networking).
- C. Routers should communicate with each other to add entries to their tables (used today).
- D. Some other mechanism.

Routing

Traditional

- Routers run a routing protocol to exchange state.
- Use state to build up the forwarding table.

Assume this is the type of routing we're talking about unless we explicitly say otherwise!

Routing

Traditional

- Routers run a routing protocol to exchange state.
- Use state to build up the forwarding table.

"Software-Defined"

- Routers are dumb, just do what they're told.
- Controller service explicitly tells each router what to do.
- Rare on the Internet, hot topic in data centers.

Datagram Forwarding

- Routers periodically exchange state.
- Use the state to build a forwarding table (FIB Forwarding Information Base)

Datagram forwarding table

Routers exchange state (we'll save the what and when for later). They decide, for each destination, how to get there, and build a lookup structure for their forwarding table. What should they build?

- A. A list scan for the destination.
- B. A hash table look up the destination.
- C. A tree Follow branches that lead to the destination.
- D. Some other software structure.
- E. We can't do this in software, we need special hardware.

Routers exchange state (we'll save the what and when for later). They decide, for each destination, how to get there, and build a lookup structure for their forwarding table. What should they build?

- A. A list scan for the destination.
- B. A hash table look up the destination.
- C. A tree Follow branches that lead to the destination.
- D. Some other software structure.
- E. We can't do this in software, we need special hardware.

Aside: router architecture overview

• high-level view of generic router architecture:

Datagram forwarding table

Routing

Traditional

- Routers run a routing protocol to exchange state.
- Use state to build up the forwarding table.

What services would we like a router to implement?

- A. Basic connectivity: route packets to destination
- B. Find policy-compliant paths (keep ISPs happy)
- C. Traffic engineering
- D. Impose limits on what can be accessed on the Internet vs. local ISP
- E. All of the above

What services would we like a router to implement?

- A. Basic connectivity: route packets to destination (implemented today)
- B. Find policy-compliant paths (keep ISPs happy) (implemented today)
- C. Traffic engineering
- D. Impose limits on what can be accessed on the Internet vs. local ISP
- E. All of the above

Nice things to have..

- Traffic engineering:
	- Want to avoid persistent overloads on links
	- Choose routes to spread traffic load across links
- Access Control:
	- Limit access to backend database machines.
	- Firewalls
- Network measurement

Routing

Traditional

- Routers run a routing protocol to exchange state.
- Use state to build up the forwarding table.

Software-Defined

- Routers are dumb, just do what they're told.
- Controller service explicitly tells each router what to do.
- Rare on the Internet, hot topic in data centers.

Software-Defined Networking (SDN)

Traditional Hardware SDN Hardware

Summary

- On the Internet, best-effort packet switching is the norm
- Forwarding*:* move packets from router's input to appropriate router output: Look up in a table
- Routing: determine route taken by packets from source to destination: Populating the table
- Hardware helps with quick forwarding using longest prefix matching.

CS 43: Computer Networks

Network Layer, IP November 12, 2024

The Network Layer!

Application: the application (e.g., the Web, Email)

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1's and 0's/bits across a medium (copper, the air, fiber)

Network Layer Functions

- Forwarding*:* move packets from router's input to appropriate router output
	- Look up in a table
- Routing: determine route taken by packets from source to destination.
	- Populating the table

IP Datagrams

- IP Datagrams are like a letter
	- Totally self-contained
	- Include all necessary addressing information
	- No advanced setup of connections or circuits

Fragmentation/ reassembly: Identifier, Flags, Offset

IP Datagrams

how much overhead?

- 20 bytes of TCP
- 20 bytes of IP
- \cdot = 40 bytes + app layer overhead

IP Datagrams

What's in a name?

- Host name: web.cs.swarthmore.edu
	- Domain: registrar for each top-level domain (e.g., .edu)
	- Host name: local administrator assigns to each host
- IP addresses: 130.58.68.164
	- Prefixes: ICANN, regional Internet registries, and ISPs
	- Hosts: static configuration, or dynamic using DHCP
- MAC addresses: D8:D3:85:94:5F:1E
	- OIDs: assigned to vendors by the IEEE
	- Adapters: assigned by the vendor from its block

IP Addressing

- IP: 32-bit addresses
	- Usually written in dotted notation, e.g. 192.168.21.76
	- Each number is a byte
	- Stored in Big Endian order (network byte order)

IP Addresses

- 2^{32} => 4,294,967,296 possible addresses.
- In the early 80's, that's a lot!
	- Population was ~4.5 billion.
- Now…not so much.
	- Population > 7 billion.

IP Prefixes

- Addresses are allocated in blocks called prefixes to organizations
- Addresses in an N-bit prefix have the same top N bits.
- If an organization has an IP/N prefix, it can allocate 2^32-N addresses to end hosts on its network

IP Prefixes

- Written in IP address/length notation
- Address is the lowest address in the allocated block. Length is prefix in bits.
- E.g. 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255 Read as: "128.13.0.0 slash 16" prefix.

10000000 00001101 xxxxxxxx xxxxxxxx

IP Prefixes

How would we express the following prefix?

Network Interfaces

- IP address: 32-bit identifier for host, router *interface*
- interface: connection between host/router and physical link
	- router's typically have multiple interfaces
	- host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

Subnets

- IP address:
	- subnet part high order bits
	- host part low order bits
- what's a subnet?
	- §device interfaces with same subnet part of IP address
	- can physically reach each other without intervening router
	- On the same link layer

Who gets an address? How many?

- Back in the old days, you called up Jon Postel
	- "How many addresses do you need?"
	- "Here you go! I may have rounded a bit."

Assigning Addresses

- IANA Internet Assigned Numbers Authority
	- (Run by Jon Postel until 1988)
	- Now a part of ICANN
- ICANN: Internet Corporation for Assigned Names and **Numbers**

– Manages IP addresses, DNS, resolves disputes

Who gets an address? How many?

- Classful Addressing
	- Class A: 8-bit prefix, 24 bits for hosts (16,777,216)
	- Class B: 16-bit prefix, 16 bits for hosts (65,536)
	- Class C: 24-bit prefix, 8 bits for hosts (256)

Classes of IP Addresses

CIDR

- Classless Inter-Domain Routing
	- Prefix (subnet) length is no longer fixed
	- (Can be division of bits rather than just 8/24, 16/16, and 24/8)

CIDR

- Classless Inter-Domain Routing
	- Prefix (subnet) length is no longer fixed
	- Address blocks come with a **subnet mask**

Classless Inter-Domain Routing (CIDR)

IP Address : 12.4.0.0 IP Mask: 255.254.0.0

Written as 12.4.0.0/15

Use two 32-bit numbers to represent a network. Network number = IP address + Mask

Slide 72
CIDR

- Classless Interdomain Routing
	- Prefix (subnet) length is no longer fixed
	- Address blocks come with a **subnet mask**
- Subnet mask written in two ways:
	- Dotted decimal: 255.255.240.0
	- $/ 20$
	- Both mean:

11111111 11111111 11110000 00000000 $/20$ Slide 73

CIDR

- Addresses divided into two pieces:
	- Prefix portion (network address)
	- Host portion
- Given an IP address and mask, we can determine:
	- The prefix (network address) by ANDing
	- The broadcast address by ORing inverted mask

Why might a device care about its "Network or Subet Address"?

- Answers the question: is the destination on the same subnet as me?
- Address + subnet mask -> Network address
- If destination is on same network:
	- Send directly to them
- Else:
	- Send to gateway router

Network Address (Subnet Address)

IP Address & subnet mask -> Network Address

• E.g., 230.8.1.3/18 /18 => mask is 255.255.192.0

Network Address (Subnet Address)

• E.g., 230.8.1.3/18 /18 => mask is 255.255.192.0

Network address advertised by router: 230.8.0.0

Broadcast Address

• E.g., 230.8.1.3/18

Broadcast Address

• E.g., 230.8.1.3/18

Broadcast Address

• E.g., 230.8.1.3/18

Broadcast address: 230.8.63.255

Datagram forwarding table

Routers exchange state (we'll save the what and when for later). They decide, for each destination, how to get there, and build a lookup structure for their forwarding table. What should they build?

- A. A list scan for the destination.
- B. A hash table look up the destination.
- C. A tree Follow branches that lead to the destination.
- D. Some other software structure.
- E. We can't do this in software, we need special hardware.

Look-up Algorithm

- Protocol: ATM (Virtual Circuits), Ethernet (Flat addresses)
	- Mechanism: Exact Match
	- Techniques: Direct lookup, Hash Tables, Binary Trees
- Protocol: IPv4, IPv6
	- Mechanism: Longest Prefix Match
	- Techniques: Prefix Trees, TCAM (Ternary Content Addressable Memories)

Datagram forwarding table

Datagram forwarding table

Longest prefix matching

In a forwarding table entry, use the longest address prefix that matches destination address.

DA: **<upper 16 bits> 00011000** 10101010

DA: **<upper 16 bits> 00010**110 10100001

which interface?

Router architecture overview

• high-level view of generic router architecture:

Longest prefix matching

In a forwarding table entry, use the longest address prefix that matches destination address.

Binary Prefix Tree

- Store the prefixes as a tree
	- Prefixes "spelled out" following a path from the root
	- One bit for each level of the tree
	- Some nodes correspond to valid prefixes
	- ... which have next-hop interfaces in a table
- When a packet arrives
	- Traverse the tree based on the destination address
	- Stop upon reaching the longest matching prefix

 $Depth = W$ Degree $= 2$ Stride = 1 bit

Multi-bit Prefix Tree

- Store the prefixes as a tree: 4-ary tree
	- k bits for each level of the tree

Depth = W/k Degree = 2^k Stride = k bits

Even Faster Lookups

- Can use special hardware
	- Content Addressable Memories (CAMs)
	- Allows look-ups on a key rather than flat address
- Huge innovations in the mid-to-late 1990s
	- After CIDR was introduced (in 1994)
	- … and longest-prefix match was a major bottleneck

Hierarchical Addressing: Route Aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Hierarchical Addressing: Route Aggregation

"Send me anything with addresses beginning 200.23.16.0/20" translates to the following:

/20 prefix contains the range of IP addresses that match the the first 20 bits, and can have any value for the remaining 12 bits in the range of : [first 20 bits] 0000 00000000 [first 20 bits] 1111 11111111 A total of $2^12 = 4,096$ IP addresses

Route aggregation in Fly-By-Night ISP

Fly-By-Night-ISP

```
200.23.16.0/20 = 11001000 00010111 00010000 00000000
```
Individual Organizations: All of these organizations IP addresses lie withinFly-by-Night's /20 prefix (first 20 bits are the same)

- they more specifically match on the three more bits to form a /23 prefix (first 23 bits of all IP addresses within their organization are the same).
- The last 9 (32-23) bits provide $2^{0} = 512$ unique IP addresses within each organization. /23 prefixes

200.23.16.0/23 = 11001000 00010111 00010000 00000000

200.23.18.0/23 = 11001000 00010111 00010010 00000000

200.23.20.0/23 = 11001000 00010111 00010100 00000000

200.23.30.0/23 = 11001000 00010111 00011110 00000000

What should we do if organization 1 decides to switch to ISPs-R-Us?

What should we do if organization 1 decides to switch to ISPs-R-Us?

- A. Move 200.23.18.0/23 to ISPs-R-Us (and break up Fly-By-Night's /20 block).
- B. Give new addresses to Organization 1 (and force them to change all their addresses).
- **C.** Some other solution. Slide 97

Hierarchical addressing: More Specific Routes

ISPs-R-Us has a more specific route to Organization 1

Hierarchical addressing: More Specific Routes

ISPs-R-Us has a more specific route to Organization 1

Longest Prefix Matching at Router 1

Now, when an incoming packet addressed with destination address 200.23.18.5 arrives – this address belongs to Organization 1 and the packet will be matched using longest prefix matching and will be routed to ISPs-R-Us rather than the Fly-by-Night ISP.

Internet Router 1