
CS 43: Computer Networks

Reliable Transport and TCP
October 29, 2024

Slide 2

Transport Layer

Slide 3

Today

• Principles of reliability
• Class of protocols: Automatic Repeat Requests

Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 4

Transport Layer perspective

Transport: executing within the OS kernel

Network: ours to command!

Slide 5

Application is the
boss

Today

• Principles of reliability
– The Two Generals Problem

• Automatic Repeat Requests
– Stop and Wait
– Timeouts and Losses
– Pipelined Transmission

Slide 6

The Two Generals Problem

• Two army divisions (blue) surround enemy (red)
– Each division led by a general
– Both must agree when to simultaneously attack
– If either side attacks alone, defeat

• Generals can only communicate via messengers
– Messengers may get captured (unreliable channel)

Slide 7

A B

The Two Generals Problem

• How to coordinate?
– Send messenger: “Attack at dawn”
– What if messenger doesn’t make it?

Slide 8

A B

The Two Generals Problem

• How to be sure messenger made it?
– Send acknowledgment: “I delivered message”

Slide 9

A B

In the “two generals problem”, can the two armies reliably
coordinate their attack? (using what we just discussed)

• A. Yes (explain how)

• B. No (explain why not)

Slide 10

The Two Generals Problem

• Result
– Can’t create perfect channel out of faulty one
– Can only increase probability of success

Slide 11

A B

Give up? No way!

As humans, we like to face
difficult problems.
• We can’t control oceans, but

we can build canals
• We can’t fly, but we’ve

landed on the moon
• We just need engineering!

Slide 12
What can possibly go wrong....

Engineering

• Concerns
– Message corruption
– Message duplication
– Message loss
– Message reordering
– Performance

• Our toolbox
– Checksums
– Timeouts
– Acks & Nacks
– Sequence numbering
– Pipelining

Slide 13

Engineering

• Concerns
– Message corruption
– Message duplication
– Message loss
– Message reordering
– Performance

• Our toolbox
– Checksums
– Timeouts
– Acks & Nacks
– Sequence numbering
– Pipelining

We use these to build Automatic Repeat Request (ARQ) protocols.

(We’ll briefly talk about alternatives at the end.)
Slide 14

Automatic Repeat Request (ARQ)

• Intuitively, ARQ protocols act like you would when using a cell phone
with bad reception.
– Receiver: Message garbled? Ask to repeat.

– Sender: Didn’t hear a response? Speak again.

• Refer to book for building state machines.
– We’ll look at TCP’s states soon

Slide 15

ARQ Broad Classifications

1. Stop-and-wait

Slide 16

Stop and Wait

Time

Sender Receiver

Slide 17

We have:
• a sender
• a receiver
• time: represented by

downwards arrow

Stop and Wait

Response

Time

Sender Receiver

Data

…

Slide 18

Sender sends data and waits till
they get the response message
from the receiver.

Buffer data, and don’t send till response received

Stop and Wait

Response

Response

Time

Sender Receiver

Data

Data

…

Slide 19

• Up next: concrete
problems and mechanisms
to solve them.

• These mechanisms will
build upon each other

• Questions?

Corruption?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 20

• Error detection mechanism:
checksum
– Data good – receiver sends

back ACK
– Data corrupt – receiver sends

back NACK

Could we do this with just ACKs or just NACKs?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 21

Error detection mechanism:
checksum
• Data good – receiver sends back

ACK
• Data corrupt – receiver sends

back NACK

A. No, we need them both.
B. Yes, we could do without one

of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

Could we do this with just ACKs or just NACKs?

ACK/NACK

Time

Sender Receiver

Data

…

Slide 22

• With only ACK, we could get
by with a timeout.

• With only NACK, we couldn’t
advance (no good).

A. No, we need them both.
B. Yes, we could do without one

of them, but we’d need some
other mechanism.

C. Yes, we could get by without
one of them.

Timeouts and Losses

Slide 23

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

Timeouts and Losses

Slide 24

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

Corr-
uption?
Send no
response

Timeouts and Losses

Slide 25

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Ti
m

eo
ut

• Sender starts a clock. If no
response, retry.

• Probably not a great idea for
handling corruption, but it
works.

Corr-
uption?
Send no
response

Timeouts and Losses

Slide 26

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

• Timeouts help us handle
message losses too!

Timeouts and Losses

Slide 27

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Ti
m

eo
ut

Time

Sender Receiver

Data

Ti
m

eo
ut

• Timeouts help us handle
message losses too!

Adding timeouts might create new problems for us to worry
about. How many? Examples?

Slide 28

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

A. No new problems (why not?)
B. One new problem (which is..)
C. Two new problems (which are..)
D. More than two new problems (which are..)

Adding timeouts might create new problems for us to worry
about. How many? Examples?

Slide 29

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

A. No new problems (why not?)
B. One new problem (which is..)
C. Two new problems (which are..)
D. More than two new problems (which are..)

Ti
m

eo
ut

ACK

Time

Sender Receiver

Data

Ti
m

eo
ut

ACK

Data

Sequence Numbering

Sender
• Add a monotonically increasing label to

each msg

Receiver
• Ignore messages with numbers we’ve

seen before

• When pipelining (a few slides from
now)
– Detect gaps in the sequence (e.g., 1,2,4,5)

123

Sender Receiver
Slide 30

What is our link utilization with a stop-and-wait protocol?

A. < 0.1 %
B. ≈ 0.1 %
C. ≈ 1 %
D. 1-10 %
E. > 10 %

Slide 31

System parameters:
Link rate: 8 Mbps (one megabyte per second)
RTT: 100 milliseconds
Segment size: 1024 bytes

What is our link utilization with a stop-and-wait protocol?

A. < 0.1 %
B. ≈ 0.1 %
C. ≈ 1 %
D. 1-10 %
E. > 10 %

Big Problem: Performance
is determined by RTT, not
channel capacity!

Slide 32

System parameters:
Link rate: 8 Mbps (one megabyte per second)
RTT: 100 milliseconds
Segment size: 1024 bytes

Pipelined Transmission

Slide 33

Keep multiple segments “in flight”
– Allows sender to make efficient use of the link
– Sequence numbers ensure receiver can distinguish

segments

Data-3

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Ack-2

Ack-3

Ack-1

Pipelined Transmission

Slide 34

Data-3
Ack-1

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Now what?

Keep multiple segments “in flight”
– Allows sender to make efficient use of the link
– Sequence numbers ensure receiver can distinguish

segments

Data-3

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0

Ack-2

Ack-3

Ack-1

What should the sender do here?

Slide 35

Ack-1

Time

Sender Receiver
Data-0Data-1Data-2

Ack-0Data-3

Now what?

What information does the sender need
to make that decision?

What is required by either party to keep
track?

A. Start sending all data again from 0.
B. Start sending all data again from 2.
C. Resend just 2, then continue with 4 afterwards.

ARQ Broad Classifications

1. Stop-and-wait

2. Go-back-N

Slide 36

Go-Back-N

Slide 37

Time

Sender Receiver
Data-0

…

Data-1Data-2

• Retransmit from point of loss
– Segments between loss

event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

Go-Back-N

Slide 38

Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Go-Back-N

Slide 39

Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Data-3

Go-Back-N

Slide 40

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Data-3Data-4

Go-Back-N

Slide 41

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Data-3Data-4

Go-Back-N

Slide 42

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Ack-1

Data-3Data-4

Go-Back-N

Slide 43

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Ack-1

Data-3Data-4

Ti
m

eo
ut

Go-Back-N

Slide 44

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

Go-Back-N

Slide 45

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

• Retransmit from point of loss
– Segments between loss

event and retransmission are
ignored

– “Go-back-N” if a timeout
event occurs

Go-Back-N Performance Optimization

Slide 46

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

• We can optimize
performance in

Go-Back-N: Performance Optimization

Slide 47

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-1

Ack-1

Data-3Data-4

Data-2Data-3Data-4

Ti
m

eo
ut

• Yes,

Selective Repeat

Slide 48

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those not
ACKed

Selective Repeat

Slide 49

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Data-3Data-4

Selective Repeat

Slide 50

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-3

Ack-4

Data-3Data-4

Selective Repeat

Slide 51

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-3

Ack-4

Data-3Data-4

Data-5Data-6

Selective Repeat

Slide 52

Ack-1
Time

Sender Receiver
Data-0

…

Data-1Data-2
Ack-0

Ack-3

Ack-4

Data-3Data-4

Data-5Data-6Data-2

Ti
m

eo
ut

• Receiver ACKs each segment
individually (not cumulative)

• Sender only resends those not
ACKed

ARQ Alternatives

• Can’t afford the RTT’s or timeouts?
• When?
– Broadcasting, with lots of receivers
– Very lossy or long-delay channels (e.g., space)

• Use redundancy – send more data
– Simple form: send the same message N times
– More efficient: use “erasure coding”
– For example, encode your data in 10 pieces such that the receiver can piece it

together with any subset of size 8.

Slide 53

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How should we choose timeout values?
• How many segments should be pipelined?

Slide 54

TCP Overview

• Point-to-point, full duplex
– One pair of hosts
– Messages in both

directions
• Reliable, in-order byte

stream
– No discrete message

• Connection-oriented
– Handshaking (exchange

of control messages)
before data transmitted

• Pipelined
– Many segments in flight

• Flow control
– Don’t send too fast for the receiver

• Congestion control
– Don’t send too fast for the network

Slide 55

Options

Transmission Control Protocol
Reliable, in-order, bi-directional byte streams
– Port numbers for demultiplexing
– Flow control
– Congestion control, approximate fairness

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

Slide 56

Options

Transmission Control Protocol
Reliable, in-order, bi-directional byte streams
– Port numbers for demultiplexing
– Flow control
– Congestion control, approximate fairness

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

Slide 57

Transmission Control Protocol

• Important TCP flags (1 bit each)
– ACK – acknowledge received data (ACK valid or not)
– SYN – synchronization, used for connection setup
– FIN – finish, used to tear down connection

0 16 314

Receive WindowNot Used|U|A|P|R|S|FHLen
FLAGS

Slide 58

URG

PUSH

RESET, SYN, FIN

Options

Transmission Control Protocol
Reliable, in-order, bi-directional byte streams
– Checksum: similar to TCP
– Urgent Pointer: Goes along with URG (U) flag in flags

field
– Options: extensibility to TCP/not required

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

Slide 59

20 bytes
header

(UDP was
8!)

Practical Reliability Questions

• What does connection establishment look like?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How do we choose sequence numbers?
• How many segments should be pipelined?

Slide 60

A connection…

1. Requires stored state at two hosts.
2. Requires stored state within the network.
3. Establishes a path between two hosts.

A. 1
B. 1 & 3
C. 1, 2 & 3
D. 2
E. 2 & 3

Slide 61

A connection…

1. Requires stored state at two hosts.
2. Requires stored state within the network.
3. Establishes a path between two hosts.

A. 1
B. 1 & 3
C. 1, 2 & 3
D. 2
E. 2 & 3

Slide 62

Connections

• In TCP, hosts must establish a connection prior to communicating.

• Exchange initial protocol state.
– sequence #s to use.
– maximum segment size (MSS)
– Initial window sizes, etc. (several parameters)

Slide 63

Three Way Handshake

• Each side:
– Notifies the other of starting sequence number
– ACKs the other side’s starting sequence number

Client
Active participant

Server
Passive participant

SYN (Seq NUM=C)

SYN/ACK (Seq NUM =S, ACK =SeqC+1)

ACK (Seq NUM = C+1, ACK = SeqS+1)

+data

SYN_SENT LISTEN

SYN_RCVD

ESTABLISHED

ESTABLISHED

Slide 64

Options

Transmission Control Protocol
Reliable, in-order, bi-directional byte streams
– Checksum: similar to TCP
– Urgent Pointer: Goes along with URG (U) flag in flags

field
– Options: extensibility to TCP/not required

Sequence Number
Acknowledgement Number

Urgent PointerChecksum

Destination PortSource Port
0 16 314

Receive WindowFlagsHLen

Slide 65

Three Way Handshake
Client

Active participant
Server

Passive participant
SYN <SeqC>

SYN/ACK <SeqS, SeqC+1>

ACK <SeqS+1>

+data

SYN_SENT LISTEN

SYN_RCVD

ESTABLISHED

ESTABLISHED

bind(),
listen()

accept()connect()

accept() returns

connect() returns
eventually, send()

Both sides agree on connection.

Slide 66

Piggybacking
Client Server

Request

Response

ACK
Request

Without
Piggybacking

…

Client Server

With
Piggybacking

…

Slide 67

ACK

Response
ACK

Request

Response + ACK

Response + ACK

Request + ACK

Initiator/Receiver

68

• Assumed distinct “sender” and “receiver” roles
• In reality, usually both sides of a connection send

some data
• request/response is a common pattern

Initiator
Active participant

Receiver
Passive participant

Connection Teardown

• Orderly release by sender and receiver when done
– Delivers all pending data and “hangs up”

• Cleans up state in sender and receiver

• Each side may terminate independently

Slide 69

Initiator
Active participant

Receiver
Passive participant

FIN

ACK

ACK

ESTABLISHED
connection

ESTABLISHED
connection

CLOSE_WAIT
passive_close

CLOSED

close() returns

Both sides agree on closing the connection.

Slide 70

FIN

FIN_WAIT_1
active_close

FIN_WAIT_2

TIME_WAIT

CLOSED

LAST_ACK close()

close()

close() returns

TCP Connection Teardown

Why does one side need to wait before transitioning to
CLOSED state?

A. Random protocol
artifact there is no
reason for it to wait.

B. There is a reason for
it to wait the reason is
…

Slide 71

The TIME_WAIT State

• We wait 2*MSL (maximum segment lifetime) before completing the close. The MSL
is arbitrary (usually 60 sec)

• ACK might have been lost and so FIN will be resent
– Could interfere with a subsequent connection

• This is why we used SO_REUSEADDR socket option in lab 2
– Says to skip this waiting step and immediately abort the connection

Slide 72

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 73

How should we choose the initial sequence number?

A. Start from zero

B. Start from one

C. Start from a random number

D. Start from some other value (such as…?)

What can go wrong with
sequence numbers?
-How they’re chosen?
-In the course of using them?

Slide 74

Sequencing

• Initial sequence numbers (ISN) chosen at random
– Does not start at 0 or 1 (anymore).
– Helps to prevent against forgery attacks.

• TCP sequences bytes rather than segments
– Example: if we’re sending 1500-byte segments

• Randomly choose ISN (suppose we picked 1150)
• First segment (sized 1500) would use number 1150
• Next would use 2650

Slide 75

Sequence Prediction Attack (1996)

Target Server

Trusted Client

Attacker (From: Forged IP of Trusted Client)SYN

SYN ACK

(From: Forged IP of Trusted Client)
ACK (Guess the ISN of server)

Evil commands

Slide 76

Practical Reliability Questions

• What does connection establishment look like?
• How do we choose sequence numbers?
• How should we choose timeout values?
• How do the sender and receiver keep track of

outstanding pipelined segments?
• How many segments should be pipelined?

Slide 77

Timeouts

• How long should we wait before timing out and retransmitting a
segment?

• Too short: needless retransmissions
• Too long: slow reaction to losses

• Should be (a little bit) longer than the RTT

Slide 78

Retransmission Timeouts

• Problem: time-out is linked to round trip time

79

Initial Send

ACK

Retry

Ti
m

eo
ut Initial Send

ACK
Retry

Ti
m

eo
utTimeout is

too short

What about if
timeout is too

long?

Estimating RTT

• Problem: RTT changes over time
– Routers buffer packets in queues
– Queue lengths vary
– Receiver may have varying load

• Sender takes measurements
– Use statistics to decide future timeouts for sends
– Estimate RTT and variance

• Apply “smoothing” to account for changes

Slide 80

Round Trip Time Estimation:
Exponentially Weighted Moving Average (EWMA)

EstimatedRTT = (1 – a) * EstimatedRTT + a * SampleRTT
– a is usually 1/8.

In words current estimate is a blend of:
• 7/8 of the previous estimate
• 1/8 of the new sample.

DevRTT = (1 – B) * DevRTT + B * | SampleRTT – EstimatedRTT |
• B is usually 1/4

81

Data

ACKSample

Estimating RTT

• For each segment that did not require a retransmit (ACK
heard without a timeout)
– Consider the time between segment sent and ACK

received to be a sample of the current RTT
– Use that, along with previous history, to update the

current RTT estimate

• Exponentially Weighted Moving Average (EWMA)

Slide 82

Round Trip Time Estimation:
Exponentially Weighted Moving Average (EWMA)

83

Data

ACK

Sa
m

pl
e

Initial Send

ACK

Retry

Ti
m

eo
ut

Sa
m

pl
e

?

RTT Sample Ambiguity

Ignore samples for retransmitted segments

84

Initial Send

ACK

Retry

Ti
m

eo
ut Initial Send

ACK
Retry

Ti
m

eo
ut

Sa
m

pl
e Sample?

EWMA

EstimatedRTT = (1 – a) * EstimatedRTT + a * SampleRTT

a is usually 1/8.
In other words, our current estimate is a blend of 7/8 of the previous
estimate plus 1/8 of the new sample.

DevRTT = (1 – B) * DevRTT + B * | SampleRTT – EstimatedRTT |

B is usually 1/4

Slide 85

Example RTT Estimation

• Suppose EstimateRTT = 64, Dev = 8
• Latest sample: 120

New estimate = 7/8 * 64 + 1/8 * 120 = 56 + 15= 71
New dev = 3/4 * 8 + 1/4 * | 120 - 71 | = 6 + 12 = 18

• Another sample: 400
New estimate = 7/8 * 71 + 1/8 * 400 = 62 + 50 = 112
New dev = 3/4 * 18 + 1/4 * | 400 - 112 | = 13 + 72 = 85

Slide 86

Example RTT Estimation (Smoothing)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T (

mi
llis

ec
on

ds
)

SampleRTT Estimated RTT

Slide 87

TCP Timeout Value

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Slide 88

