
CS 43: Computer Networks

12: Transport Layer & UDP
October 24, 2024



Application Layer 

Does whatever an application does!

Slide 2

Chrome Thunderbird SkypeDNS



Application Layer

Peer-to-peer architecture

Slide 3

Client Server
(always on)

Internet
Peer Peer

Client-server architecture 

Chrome Thunderbird SkypeDNS



application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Slide 4

Application

Transport: 
TCP

Network: IP data

Link: Ethernet data

data

Encapsulation:
Higher layer within lower layer

Application Layer



Slide 5

Transport Layer!



Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium 
(copper, the air, fiber)

Slide 6



Message Encapsulation

• Higher layer within lower layer

• Each layer has different concerns, provides abstract 
services to those above

Application

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 7



Recall: Addressing and Encapsulation

Application: HTTP

Transport: TCP

Network: IP data

Link: Ethernet data

data

Slide 8

Human-readable strings: www.example.com

Assigning ports to socket ID

IP addresses (IPv4, IPv6)

(Network dependent) Ethernet: 
48-bit MAC address



Transport Layer perspective

Transport: executing within the OS kernel

Network: ours to command!

Slide 9

Application is the 
boss



Transport Layer perspective

Transport: executing within the OS kernel

What commands can we send to the network layer?

Slide 10

Looked at 
Application Layer



What services does the network layer provide 
to the transport layer?

Slide 11

Transport: executing within the OS kernel

What commands can we send to the 
network layer?

Looked at Application Layer

A. Find paths through the 
network

B. Guaranteed delivery rates

C. Best-effort delivery

D. Reliable Data Transfer



send_to_host (data, host_IP) : logical communication between end-hosts

✔   Find paths through the network

✔   Best-effort delivery! 

Slide 12

Network Layer API

Source Destination

❌  reliable data transfer

❌  guaranteed delivery (or rate!)



Provides logical communication 
between processes.

send_data_to_application (data, 
port, socket)

application
transport
network
data link
physical

logical end-end transport

application
transport
network
data link
physical

Slide 13

Transport Layer API



Transport Layer: Runs on end systems

Slide 14

HTTP,
DNS..

TCP

IP

Ethernet
interface

HTTP,
DNS...

TCP

IP

Ethernet
interface

host host

IP

Ethernet
interface

SONET
interface

router

IP

Ethernet
interface

SONET
interface

router

Logical communication 
between processes



How many of these services might we provide at the transport 
layer? Which?

• Reliable transfers
• Error detection
• Error correction
• Bandwidth guarantees
• Latency guarantees

• Encryption
• Message ordering
• Link sharing fairness 

with other end hosts

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

Slide 15



How many of these services might we provide at the transport 
layer? Which?

• Reliable transfers (T)
• Error detection (U, T)
• Error correction (T)
• Bandwidth guarantees
• Latency guarantees

• Encryption
• Message ordering (T)
• Link sharing fairness (T)

A. 4 or fewer
B. 5
C. 6

D. 7
E. All 8

Critical question: Can it be done at the end host?

Slide 16



TCP sounds great!  UDP…meh.  Why do we need it?

A. It has good performance characteristics.

B. Sometimes all we need is error detection.

C. We still need to distinguish between applications.

D. It basically just fills a gap in our layering model.

Slide 17



• Nothing comes for free

• Data given by application

• Apply header
– Keeps transport state
– Attached by sender
– Decoded by receiver

Payload Data

Payload DataTCP/
UDP

Adding Features

Slide 18



Moving down a layer!

Application Layer

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium 
(copper, the air, fiber)

Slide 19



Network mnemonics

• Data pieces:
– Transport: Segments
– Network: Datagrams (or packets)
– Link:  Frames
– Physical: Bits

“Big Freaking Deal, Sherlock!”

Slide 20



Two Main Transport Layer Protocols

• User Datagram Protocol (UDP)
– Unreliable, unordered delivery

• Transmission Control Protocol (TCP)
– Reliable in-order delivery

Slide 21



TCP: Transport Control Protocol

GET http://www.google.com HTTP/1.1
Host: www.google.com
…

GET htt1p://www.2google.c3

application layer packet boundaries are not preserved
• multiple send() -> one recv() 
• 1 send() -> multiple recv()

HTTP HTTP

TCPTCP

Network Layer

Stream socket: reliable stream of bytes

http://www.google.com/


TCP: Stream abstraction
Slide 23

send() and recv() need not have a 1-1 correspondence. 

send() recv()

SocketSocket



UDP: User Datagram Protocol

Slide 24

HTTP HTTP

UDPUDP

Network Layer

Message socket: unreliable message delivery

Header
Question
Answer

Authority
Additional

dig demo.cs.swarthmore.edu

application layer packet boundaries are preserved
• 1 send() -> 1 recv()



Sockets

• Application processes communicate using 
“sockets”/mailboxes
– Abstraction: sends/receives data to/from its socket

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Slide 25



Recall TCP Sockets

socket()

bind()

listen()

accept()

recv()

send()

close()

socket()

connect()

send()

recv()

close()

Server

Client

Slide 26



UDP Sockets

socket()

bind()

recvfrom()

sendto()

close()

socket()

sendto()

recvfrom

close()

Server

Client

Slide 27

recvfrom()
many different clients 
over the same socket

sendto()
many different 
servers over 
the same 
socket

no connection 
establishment phase



multiplexing

transport

application

?

de-multiplexing

transport

application

Multiplexing/demultiplexing: Transport Layer

assign port # to 
distinguish 
between 
applications on 
the same end 
hosts

use port # to 
direct packets to 
the correct 
application layer 
processes



Multiplexing

De-multiplexing

Multiplexing/
demultiplexing: 
Happens at every layer!



Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct 
socket

demultiplexing at receiver:

transport

application

physical
link

network

P2P1

transport

application

physical
link

network

P4

transport

application

physical
link

network

P3

handle data from multiple
sockets, add transport header 
(later used for demultiplexing)

multiplexing at sender:



§ TCP socket identified by 4-tuple: 
• source IP address
• source port number
• dest IP address
• dest port number

§ Receiver uses all four values to direct segment to appropriate 
socket

Recall: Connection-oriented: example

Slide 31



Recall: Connection-oriented: HTTP example

transport

application

physical
link

network

P3
transport

application

physical
link

P4

transport

application

physical
link

network

P2

source IP,port: B,80
dest IP,port: A,9000

host: IP 
address A

host: IP 
address C

network

P6P5
P3

source IP,port: C,5000
dest IP,port: B,80

source IP,port: C,5050
dest IP,port: B,80

source IP,port: A,9000
dest IP, port: B,80

server: IP 
address B

Slide 32

source port: 9000

P2 source 
port: 
5000

P3 source 
port: 
5050

A TCP socket is uniquely identified by (source IP, source port, dest IP, dest port)



§ UDP socket identified by 2-
tuple: 
• dest IP address
• dest port number

§ when receiving host receives 
UDP segment:
• checks destination port # 

in segment
• directs UDP segment to 

socket with that port #

Connectionless: example

Slide 33

UDP datagrams with 
same dest. port #, but 
different source (IP/ 

port #) will be directed 
to same socket at 

receiving host



Connectionless demultiplexing: an example
A UDP socket is uniquely identified by (dest IP, dest port)

DatagramSocket 
serverSocket = new 
DatagramSocket

 (53);

transport

application

physical
link

network

P3
transport

application

physical
link

network

P1

transport

application

physical
link

network

P4

DatagramSocket mySocket1 = 
new DatagramSocket (5775);

DatagramSocket mySocket2 
= new DatagramSocket
 (9157);

dest IP: B
dest port: 53

dest IP: A
dest port: 9157

dest IP: ?
dest port: ?

dest IP: ?
dest port: ?

host: IP 
address A

host: IP 
address C

server: IP 
address B



UDP – User Datagram Protocol

• Unreliable, unordered service
• Adds:
– multiplexing, 
– checksum (error detection)

Slide 35



UDP: User Datagram Protocol [RFC 768]

“No frills,” “Bare bones” Internet transport protocol
– RFC 768 (1980)
– Length of the document?

Slide 36



UDP: User Datagram Protocol [RFC 768]

“Best effort” service, 
UDP segments may be:
– Lost
– Delivered out of order (same as underlying network layer)

¯\_(ツ)_/¯

Slide 37



How many of the following steps does UDP 
implement? (which ones?)

1. exchange an initiate handshake (connection setup) 
2. break up packet into segments at the source and number 

them
3. place segments in order at the destination
4. error-checking with checksum 

A. 1 
B. 2
C. 3
D. 4

Slide 38



UDP Segment

SrcPort DstPort

ChecksumLength

Data

0 16 31

Slide 39

32 bits



source port # dest port #

application
data 
(variable length)

Urg data pointer

FSRPAUhead
len

not
used

checksum
receive window

sequence number

acknowledgement number

options (variable length)

32 bits

TCP Segment!

Slide 40



UDP Segment

SrcPort DstPort

ChecksumLength

Data

0 16 31

Slide 41

32 bits



UDP Checksum

• Goal: Detect transmission errors (e.g. flipped bits)
– Router memory errors
– Driver bugs
– Electromagnetic interference

Slide 42



UDP Checksum

RFC: “Checksum is the 16-bit one's complement of the 
one's complement sum of a pseudo header of information 
from the IP header, the UDP header, and the data, padded 
with zero octets at the end (if  necessary) to make a 
multiple of two octets.”

Slide 43

( ? _ ? )



• Treat the entire segment as 16-bit integer values
• Add them all together (sum)
• Put the 1’s complement in the checksum header field

UDP Checksum at the Sender

Slide 44



• In bitwise compliment, all of the bits in a binary 
number are flipped.

• So 1111000011110000 -> 0000111100001111

One’s Compliment

Slide 45



example: add two 16-bit integers

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

sum
checksum

wraparound

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result

1

Checksum example

Slide 46



• Add all the received data together as 16-bit integers

• Add that to the checksum

• If result is not 1111 1111 1111 1111, there are errors!

• If there are errors chuck the packet. 

Receiver

Slide 47

¯\_(ツ)_/¯



If our checksum addition yields all ones, 
are we guaranteed to be error-free?

A. Yes

B. No

Slide 48



example: add two 16-bit integers

1  1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1  1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1  0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

sum
checksum

wraparound

Note: when adding numbers, a carryout from the most 
significant bit needs to be added to the result

1

Checksum example

Slide 49



• Latency sensitive
– Quick request/response (DNS)
– Network management (SNMP, DHCP)
– Voice/video chat 

• Communicating with lots of others

UDP Applications

Slide 50



With TCP, send() blocks if buffer full.

Recall: TCP send() blocking

Slide 54



With TCP, send() blocks if buffer full.

• Does UDP need to block?  Should it?

A. Yes, if buffers are full, it should.
B. It doesn’t need to, but it might be useful.
C. No, it does not need to and shouldn’t do so.

UDP sendto() blocking

Slide 55



With TCP, send() blocks if buffer full.

• Does UDP need to block?  Should it?

A. Yes, if buffers are full, it should.
B. It doesn’t need to, but it might be useful.
C. No, it does not need to and shouldn’t do so.

Slide 56

UDP sendto() blocking



Transport Layer:
• Provides a logical communication between 

processes/ applications
• packets are called segments at the transport layer
• Transport layer protocol: responsible for adding port 

numbers (mux/demux segments)

Slide 57

Summary



UDP:
• No “frills” protocol, No state maintained about the packet
• Checksum (1’s complement) over IP + UDP + payload.
– can only correct for 1 bit errors.

• adds port numbers over unreliable network (best effort)
• applications:
– latency sensitive applications: real-time audio, video
– communicating with a lot of end-hosts (like DNS)

• UDP Sockets:
– do not need to be implemented as blocking system calls for correctness since the only 

guarantee UDP makes is best-effort delivery.
– however send/recv can be implemented as blocking system calls depending on the 

application

Summary

Slide 58


