
CS 43: Computer Networks

11: DHTs and CDNs
October 22, 2024

Slides Courtesy: Kurose & Ross, K. Webb, D. Choffnes

Where we are

Application: (So far: HTTP, Email, DNS)
Today: P2P systems, Overlay Networks

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 2

Overlay Network (P2P)

• A network made up of “virtual” or logical links

• Virtual links map to one or more physical links

Slide 3

Overlay Network (P2P)

• A network made up of “virtual” or logical links

• Virtual links map to one or more physical links

Slide 4

In our P2P examples with no central server, what’s the best
mechanism to find content?

A. Flooding each node and querying
B. Maintaining an entire list at each node
C. Some other system that scales

Slide 5

A. Flooding each node and querying
B. Maintaining an entire list at each node
C. Some other system that scales - a Distributed Hash

Table.

Slide 6

In our P2P examples with no central server, what’s the best
mechanism to find content?

Unstructured Overlay Networks

• Overlay links form random graphs
• No defined structure
• Examples: Gnutella: links are peer relationships

Slide 7

Unstructured Overlay Issues

8

What if the
file is rare or

far away?

Redundancy

Traffic
Overhead

• Search is broken
• High overhead
• No guarantee it will work

Structured Overlay Networks
(I.e. getting rid of that bit-torrent server…)

• Distribute the tracker information using a Distributed Hash Table (DHT)

• A DHT is a lookup structure
– Maps keys to an arbitrary value.
– Works a lot like, well…a hash table.

Slide 9

Recall: Hash Function

• Mapping of any data to a hash value
• if keys are integers, with n nodes in the network
– id = key % n
– E.g., md5sum, sha1, etc.
– md5: 04c3416cadd85971a129dd1de86cee49

• With a good (cryptographic) hash function:
– Hash values very likely to be unique
– Near-impossible to find collisions (hashes spread out)

Slide 10

Distributed Hash Table (DHT)

• DHT: a distributed P2P database
– Data items stored by a network of peers

• DHT abstraction:
– Input: key
– Output: node that stores the content

• Same interface as standard HT: (key, value) pairs
– get(key) – send key to DHT, get back value
– put(key, value) – modify stored value at the given key

Slide 11

DHT Goals

• Scalability: each node does not keep much state

• Performance: small look up latency

• Load balancing: no node is overloaded with a large amount of state

• Dynamic re-configuration: when nodes join and leave the amount of state moved
amongst nodes is minimal

• Distributed: no node is more important than others

Slide 12

Distributed Hash Table

• Used in the real world
– BitTorrent tracker implementation
– Content distribution networks
– Many other distributed systems including botnets L

Slide 13

DHT: Strawman approach

• Suppose all the keys are integers
• The number of nodes in the network is n
– id = key % n

Slide 14

DHT: Strawman approach:

• Node 2 dies
• A large number of data items need to be rehashed
– id = key % n

Slide 15

DHT: Consistent Hashing

• Consistent hashing:

– hash node -> identifier space

– hash key -> identifier space

• Node is responsible for a range of keys

– Multiple key-value pairs assigned to each node

• A key is stored at a node whose identifier is closest to the key in the identifier
space

• All DHTs implement consistent hashing

• They differ in the underlying “geometry”
Slide 16

Challenges

• How do we assign (key, value) pairs to nodes?

• How do we find them again quickly?

• What happens if nodes join/leave?

Slide 17

Circular DHT Overlay

• Hash both node ID and key into an m-bit one- dimension circular identifier space

• Example: 4-bit identifier space [0 – 15]

– Convert each content key to an integer [0-15] via hash.

– Convert each node ID to an integer [0 – 15] via hash.

– The key is stored at its successor: node with next highest integer

Slide 19

Circular DHT Overlay

• Simplest form: each node only aware of immediate
successor and predecessor.

Slide 20

1

3

4

5

8
10

12

15

Node IDs

Circular DHT Overlay

• Simplest form: each node only aware of immediate
successor and predecessor.

Slide 21

…N
N1

N3

N4

N5

N8
N10

N12

N15

Circular DHT Overlay

• Example: Node 1 wants key “Led Zeppelin IV”
– Hash the key “Led Zeppelin IV”

Slide 22

Hash both node id and key onto
one- dimension circular identifier
space

Each node is assigned an integer
ID from the range [0, 2n –1]

Each key is hashed to an integer
ID in the same range [0, 2n –1]

N1

N3

N4

N5

N8
N10

N12

N15

Circular DHT Overlay

• Example: Node 1 wants key “Led Zeppelin IV”
– Hash the key “Led Zeppelin IV” = K6

Slide 23

Hash both node id and
key onto
one- dimension circular
identifier space

The key is stored at its
successor: node with next

highest integer

N1

N3

N4

N5

N8
N10

N12

N15

K6

Circular DHT Overlay

• Example: Node 1 wants key “Led Zeppelin IV”
– Hash the key “Led Zeppelin IV” = K6

Slide 24

N1

N3

N4

N5

N8
N10

N12

N15

K6

Circular DHT Overlay

• Example: Node 1 wants key “Led Zeppelin IV”
– Hash the key “Led Zeppelin IV” = K6

Slide 25

N1

N3

N4

N5

N8
N10

N12

N15

K6

Circular DHT Overlay

• Example: Node 1 wants key “Led Zeppelin IV”
– Hash the key “Led Zeppelin IV” = K6

Slide 26

N1

N3

N4

N5

N8
N10

N12

N15

K6

Circular DHT Overlay

• Example: Node 1 wants key “Led Zeppelin IV”
– Hash the key “Led Zeppelin IV” = K6

If anybody
has it, it’s my

successor.

Slide 27

N1

N3

N4

N5

N8
N10

N12

N15

K6

Circular DHT Overlay

• Example: Node 1 wants key “Led Zeppelin IV”
– Hash the key “Led Zeppelin IV” = K6

Slide 28

N1

N3

N4

N5

N8
N10

N12

N15

K6
Checks key

Circular DHT Overlay

• Example: Node 1 wants key “Led Zeppelin IV”
– Hash the key “Led Zeppelin IV” = K6

Value:
Data
locations

Slide 29

N1

N3

N4

N5

N8
N10

N12

N15

K6

Given N nodes, what is the complexity
(number of messages) of finding a value

when each peer knows its successor?

A. O(log n)

B. O(n)

C. O(n2)

D. O(2n)

Can we do better?
How?

Slide 30

1

3

4

5

8
10

12

15

Reducing Message Count

• Store successors that are 20, 21, 22, 23, …, N/2 away.
• Can jump up to half way across the ring at once.
• Cut the search space in half - lookups take O(log N) messages.

Slide 31

1

3

4

5

8
10

12

15

Each node maintains a finger table to log(N) other nodes

Slide 32

N1

N3

N4

N5

N8
N10

N12

N15

Finger Table Node 1

N1 + 20 +1 N3

N1 + 21 +2 N3

N1 + 22 +4 N5

N1 + 23 +8 N10

Each node i in [1, n] knows of its successor and the nodes responsible
for ID: (i+2k) up to n/2
• n/2 = 16/2 = 8 = 2k => k = 3
• 0 ≤ k ≤ 3, in this example

+1

+2

+4

+8

Search with
finger tables

Slide 33

N1

N3

N4

N5

N8
N10

N12

N15

Finger Table Node 1

N1 + 20 +1 N3

N1 + 21 +2 N3

N1 + 22 +4 N5

N1 + 23 +8 N10

Lookup K6 from N1 = N1 -> N5 -> N8.

Finger Table Node 5

N5 + 20 +1 N8

N5 + 21 +2 N8

N5 + 22 +4 N10

N5 + 23 +8 N15

K6

Look up K6 N5 is the closest
predecessor node

to K6

N8 is my immediate
neighbor

Value:
Data

Search with
finger tables

Slide 34

N1

N3

N4

N5

N8
N10

N12

N15

Finger Table Node 1

N1 + 20 +1 N3

N1 + 21 +2 N3

N1 + 22 +4 N5

N1 + 23 +8 N10

Lookup K14 from N1 = N1 -> N10 -> N15

Finger Table Node 10

N10 + 20 +1 N12

N10 + 21 +2 N12

N10 + 22 +4 N15

N10 + 23 +8 N1

K14

Look up K14
N10 is the closest
predecessor node

to K14

N15 is the next node
that should hold K14

The key is stored at (the
key’s) successor: node with

next highest integer

Search with
finger tables

Slide 35

N1

N3

N4

N5

N8
N10

N12

N15

Finger Table Node 1

N1 + 20 +1 N3

N1 + 21 +2 N3

N1 + 22 +4 N5

N1 + 23 +8 N10

Lookup K14 from N1 = N1 -> N10 -> N15

Finger Table Node 10

N10 + 20 +1 N12

N10 + 21 +2 N12

N10 + 22 +4 N15

N10 + 23 +8 N1

K14

Look up K14

What is the size of the
routing table at each
node?
• n
• log n
• n2

Peer/Node churn
Handling node churn:
• nodes may come and go

(churn)
• each node knows address of

two of its successors
• each node periodically pings its

two successors to check
aliveness

• if immediate successor leaves,
choose next successor as new
immediate successor

N1

N3

N4

N5

N8
N10

N12

N15

Peer churn

Example: node 5 abruptly leaves
• Node 4 detects peer 5 departure;
• makes 8 its immediate successor;
• asks 8 who its immediate successor is;
• makes 8’s immediate successor its second successor.

N1

N3

N4

N5

N8
N10

N12

N15

Tapestry/Pastry

• Node IDs are numbers in a ring
– 128-bit circular ID space

• Node IDs chosen at random
• Messages for key X is routed to

live node with longest prefix
match to X
– Incremental prefix routing
– 1110:

1XXXà11XXà111Xà1110

0

1000

0100

00101110

1100

1010 0110

1111 | 0
To: 1110

Slide 38

Physical and Virtual Routing

0

1000

0100

00101110

1100

1010 0110

1111 | 0
To: 1110

To: 1110

1010

1100

1101

0010

Slide 39

Summary of DHT Overlays

• A namespace
– For most, this is a linear range from 0 to 2160

• A mapping from key to node
– Chord: keys between node X and its predecessor belong to X
– Tapestry/Pastry: keys belong to node w/ closest identifier
– Dynamo: Amazon’s Highly Available Key-value Store

Slide 40

High-Performance Content Distribution

• Problem:
You have a service that supplies lots of data. You want good
performance for all users!

(often “lots of data” means media files)

Slide 41

What is a Content Distribution Network?

An overlay network, that is geo-distributed and stores
cached content “close” to users.

At least 70% of the world’s bits are delivered by a CDN!

Slide 42

…
…

……

…
…

Content distribution networks (CDNs)

§CDN: stores copies of content (e.g. MADMEN)
at CDN nodes

where’s Madmen?

nearby CDN replicas

Examples of CDNs

• Akamai
– 147K+ servers, 1200+ networks, 650+ cities, 92 countries

• Limelight
– Well provisioned delivery centers, interconnected via a private fiber-optic

connected to 700+ access networks
• Edgecast
– 30+ PoPs, 5 continents, 2000+ direct connections

• Others
– Google, Facebook, AWS, AT&T, Level3

Slide 44

CDN caching
• Locality of reference:
– Users tend to request the same object in

succession
– Some objects are popular: requested by many

users
Server

Clients

Backbone ISP

ISP-1 ISP-2

Slide 45

Where to cache content?

A. At the client
B. At the server (distributed server load)
C. At the Service Providers (ISPs)

Server

Clients

Backbone ISP

ISP-1 ISP-2

Slide 46

Where to cache content?

A. At the client (browser) – avoid extra network
transfers

B. At the server (distributed server load) – reduce load
C. At the Service Providers (ISPs) – reduce external

traffic
Server

Clients

Backbone ISP

ISP-1 ISP-2

Slide 47

Key Components of a CDN

• Distributed servers
– Usually located inside of other ISPs
– Often located in IXPs

• High-speed network connecting them
• Clients (eyeballs)
– Can be located anywhere in the world
– They want fast web performance

• Glue
– Something that binds clients to “nearby” replica servers

Slide 48

High-Performance Content Distribution

• Major challenges:
– How do we direct the user to a nearby replica instead of the centralized

source?
– How do we determine which replica is the best to send them to?
– Ensure that replicas are always available?

Slide 49

Challenge 1: Finding the CDN

• Three main options:
– Application redirect (e.g., HTTP)
– “Anycast” routing
– DNS resolution (most popular in practice)

• Example: CNN + Akamai

Slide 50

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Content servers: serve media.

Slide 51

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

Content servers: serve media.

Slide 52

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

akamai.net DNS servers…

Content servers: serve media.

Akamai’s DNS response directs
user to selected server.

Retrieve media file.

Slide 53

CNN + Akamai

www.cnn.com

Request: cnn.com/article
Response: HTML with link
to cache.cnn.com media

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

swarthmore.edu
DNS servers

cnn.com
DNS servers

pbs.org
DNS servers

akamai.net DNS servers…

Content servers: serve media.

Akamai’s DNS response directs
user to selected server.

Retrieve media file.

How to
choose?

Slide 54

Which metric is most important when choosing a server?
(CDN or otherwise)

A. RTT latency

B. Data transfer rate / throughput

C. Hardware ownership

D. Geographic location

E. Some other metic(s) (such as?)

This is the CDN
operator’s secret sauce!

Slide 55

Which metric is most important when choosing a server?
(CDN or otherwise)

A. RTT latency

B. Data transfer rate / throughput

C. Hardware ownership

D. Geographic location

E. Some other metic(s) (such as?)

This is the CDN
operator’s secret sauce!

Slide 56

Content in today’s Internet

• Most flows are HTTP
– Web is at least 52% of traffic
– Median object size is 2.7K, average is 85K (as of 2007)

• Is the Internet designed for this common case?
– Why?

Slide 57

Why speed matters

• Impact on user experience
– Users navigating away from pages
– Video startup delay

• 4x increase in
abandonment
with 10s increase in
delay

Slide 58

Streaming Media

• Straightforward approach: simple GET

• Challenges:
– Dynamic network characteristics
– Varying user device capabilities
– User mobility

Slide 59

Dynamic Adaptive Streaming over HTTP (DASH)

• Encode several versions of the same media file
– low / medium / high / ultra quality

• Break each file into chunks

• Create a “manifest” to map file versions to chunks / video time offset

Slide 60

Dynamic Adaptive Streaming over HTTP (DASH)

• Client requests manifest file, chooses version

• Requests new chunks as it plays existing ones

• Can switch between versions at any time!

Slide 61

Summary

• Peer-to-peer architectures for:
– High performance: BitTorrent
– Decentralized lookup: DHTs

• CDNs: locating “good” replica for media server

• DASH: streaming despite dynamic conditions

Slide 62

