
CS 43: Computer Networks

P2P, BitTorrent
October 08, 2024

SMTP versus HTTP

• HTTP: pull
• SMTP: push

• Both have ASCII command/response interaction, status codes

• HTTP: each object encapsulated in its own response message

• SMTP: multiple objects sent in multipart message

SMTP: final words

• SMTP uses persistent connections
• Can send multiple emails in one session

• SMTP requires message (header & body) to be in 7-bit ASCII

• SMTP server uses CRLF.CRLF to determine end of message

If SMTP only allows 7-bit ASCII, how do we
send pictures/videos/files via email?

A. We encode these objects as 7-bit ASCII

B. We use a different protocol instead of SMTP

C. We’re really sending links to the objects, rather
than the objects themselves

Base 64

• Designed to be an efficient way to send binary data as a
string

• Uses A-Z, a-z,0-9, “+” and “/” as digits

• A number with digits dndn-1…..d1d0 =
 64n*dn+64n-1*dn-1+. . . + 64*d1+ d0

• Recall from CS 31: Other non-base-10 number systems
(binary, octal, hex).

Multipurpose Internet Mail Extensions (MIME)

• Special formatting instructions

• Indicated in the header portion of message (not SMTP)
• SMTP does not care, just looks like message data

• Supports
• Text in character sets other than ASCII
• Non-text attachments
• Message bodies with multiple parts
• Header information in non-ASCII character sets

MIME

• Adds optional headers
• Designed to be compatible with non-MIME email clients
• Both clients must understand it to make sense of it

• Specifies content type, other necessary information

• Designates a boundary between email text and
attachments

Mail access protocols

• SMTP: delivery/storage to receiver’s server

• mail access protocol: retrieval from server
• POP: Post Office Protocol: authorization, download
• IMAP: Internet Mail Access Protocol: more features,

including manipulation of stored messages on server
• HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
 IMAP)

user
agent

user
agent

POP3 protocol
authorization phase
• client commands:

• user: declare username
• pass: password

• server responses
• +OK
• -ERR

transaction phase, client:
• list: list message numbers
• retr: retrieve message by

number
• dele: delete
• quit

C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Lecture 12 - Slide 9

More about POP3

• Previous example uses “download and delete” mode
–Bob cannot re-read e-mail if he changes client

• POP3 “download-and-keep”: copies of messages on different
clients

• POP3 is stateless across sessions

• Limitations:
– Can’t retrieve just the headers
– Can’t impose structure on messages

IMAP

• Keeps all messages in one place: at server

• Allows user to organize messages in folders

• Keeps user state across sessions:
• names of folders and mappings between message IDs and folder

name

• Can request pieces of a message (e.g., text parts without large
attachments)

Webmail

• Uses a web browser

• Sends emails using HTTP rather than POP3 or IMAP

• Mail is stored on the 3rd party webmail company’s servers

Summary

• Three main parts to email:
• Mail User Agent (mail client): read / write for humans
• Mail Transfer Agent: server that accepts / sends messages
• SMTP protocol used to negotiate transfers

• No SMTP support for fraud detection

• Extensions (MIME) and encodings (Base64) for sending
non-text data

• P2P vs Client-Server applications

• P2P examples
• Napster

• BitTorrent
• Cooperative file transfers

Today

Where we are

Application: the application (So far: HTTP, Email, DNS)
Today: BitTorrent, Skype, P2P systems

Transport: end-to-end connections, reliability

Network: routing

Link (data-link): framing, error detection

Physical: 1’s and 0’s/bits across a medium
(copper, the air, fiber)

Slide 15

Designating roles to an endpoint

Peer-to-peer architecture

Slide 16

Client Server
(always on)

Internet Peer Peer

Client-server architecture

• no always-on server
• A peer talks directly with another peer

• Symmetric responsibility (unlike
client/server)

• peers request service from other
peers, provide service in return to
other peers
• self scalability – new peers bring

new service capacity, as well as
new service demands

• peers are intermittently connected
and change IP addresses
• complex management

peer-peer

Peer-to-Peer Architecture

Slide 17

File Transfer Problem

• You want to distribute a file to a large number of people as
quickly as possible.

Slide 18

Traditional Client/Server

• Many clients, 1 (or more) server(s)
• Web servers, DNS, file downloads, video streaming

Slide 19

Traditional Client/Server

Slide 20

What is the biggest problem you run into with the
traditional C/S model?

A. Scalability (how many end-hosts can you
support?)

B. Reliability (what happens on failure?)
C. Efficiency (fast response time)

Slide 21

Traditional Client/Server

Heavy Congestion

Free Capacity

Slide 22

P2P Solution

Slide 23

Client-server vs. P2P: example

Slide 24

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e

N

P2P
Client-Server

Number of clients/peers

M
in

im
um

 D
ist

rib
ut

io
n

Ti
m

e
(h

ou
rs

)

In a peer-to-peer architecture, are there clients and
servers?

A. Yes

B. No

Slide 25

Slide 26

us

u

d

server

network (with abundant
 bandwidth)

us: server upload capacity

u: peer upload capacity

d: peer download
capacityu d

u d

d

u

File size = 6 Gbits = 6000 Mb (megabits)
Number of peers = 10
Server upload rate of u_s = 100 Mbps (megabits per second)
Peer upload rate of u = 20Mbps
Peer download rate of d = 50Mbps Worksheet

Question

C/S Model

• Minimum time to distribute the file = max(time to upload the
file, time to download the file)
• Time to upload the file = NF/u_s = 6000*10/100 = 600s
• Time to download the file = 6000/50 = 120s
• Min time = 600s.

Slide 27

P2P Model

• Minimum time to distribute the file = max(time to upload the
file, time to download the file)
• Time to upload the file from the server = F/u_s = 6000/100 =

60s
• Time to upload from peers to every other peer

6000*10/(100+20*10) = 200s
• Time to download the file = 6000/50 = 120s
• Min time = 200s

Slide 28

Designating roles to an endpoint

Peer-to-peer architecture

Slide 29

Peer Peer

Napster Architecture

Napster
Central Server

Log-in, upload
list of filesSearch for Star

Wars

A

B

C

D

E

F

G

B and C have
the file

Slide 30

File Search via Flooding in Gnutella

Slide 31

Peer Lifetimes: Highly available?

Sessions are short
~60 minutes

Hosts are frequently
offline

Host Uptime (out of 100%)

Pe
rc

en
ta

ge
 o

f H
os

ts

Slide 32

“only 20% of the peers in each system had an IP-level uptime
of 93% or more.”

Host Uptime (out of 100%)

Pe
rc

en
ta

ge
 o

f H
os

ts

Study of host uptime and application uptime (MMCN 2002)

Resilience to Failures and Attacks
• Previous studies (Barabasi) show interesting

dichotomy of resilience for “scale-free networks”
• Resilient to random failures, but not attacks

• Here’s what it looks like for Gnutella

1771 Peers in Feb, 2001 After random 30% of peers removed
After top 4% of peers are removed

Slide 33

Hierarchical P2P Networks

• FastTrack network (Kazaa, Grokster, Morpheus, Gnutella++)

supernode

Slide 34

Skype: P2P VoIP

• P2P client supporting VoIP, video, and
text based conversation, buddy lists, etc.
• Overlay P2P network consisting of ordinary and Super Nodes (SN)

• Each user registers with a central server
• User information propagated in a decentralized fashion

Slide 35

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a
file

Alice arrives …

• File divided into chunks (commonly 256 KB)
• Peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent Slide 36

.torrent files

• Contains address of tracker for the file
• Where can I find other peers?

• Contain a list of file chunks and their cryptographic hashes
• This ensures pieces are not modified

Slide 37

• has no chunks, but will
accumulate them over time
from other peers
• registers with tracker to get

list of peers, connects to
subset of peers
(“neighbors”)

BitTorrent : Peer Joining

Slide 38

• While downloading, peer
uploads chunks to other
peers

• Churn: peers may come and
go
• Peer may change peers

with whom it exchanges
chunks

P2P file distribution: BitTorrent

Slide 39

Requesting Chunks

• At any given time, peers have different subsets of file chunks.

• Periodically, ask peers for list of chunks that they have.

• Once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

Slide 40

Sharing Pieces

Initial Seeder

1 2 3 4 5 6 7 8

Leecher

1 2 3

Leecher

54 76 8 1 2 3 54 76 8

Seeder Seeder
Slide 41

If you’re trying to receive a file, which chunk should you
request next?

A. Random chunk.
B. Most common chunk.
C. Least common chunk.
D. Some other chunk.
E. It doesn’t matter.

Slide 42

Requesting Chunks

• Bootstrap: random selection
• Initially, you have no pieces to trade
• Essentially, beg for free pieces at random

• Steady-state: rarest piece first
• Ensures that common pieces are saved for last

• Endgame
• Simultaneously request final pieces from

multiple peers
• Cancel connections to slow peers
• Ensures that final pieces arrive quickly

0%

100%

%
 D

ow
nl

oa
de

d

Slide 43

Sending Chunks: tit-for-tat

• A node sends chunks to those four peers currently
sending it chunks at highest rate
- other peers are choked (do not receive chunks)
- re-evaluate top 4 every ~10 secs

• Every 30 seconds: randomly select another peer, start
sending chunks
- “optimistically unchoke” this peer
- newly chosen peer may join top 4

Slide 44

Academic Interest in BitTorrent

• BitTorrent was enormously successful
• Large user base
• Lots of aggregate traffic
• Invented relatively recently

• Research
• Modifications to improve performance
• Modeling peer communications (auctions)
• Gaming the system (BitTyrant)

Slide 45

Incentives to Upload

• Every round, a BitTorrent client calculates the number of pieces
received from each peer
• The peers who gave the most will receive pieces in the next round
• These decisions are made by the unchoker

• Assumption
• Peers will give as many pieces as possible each round
• Based on bandwidth constraints, etc.

• Can an attacker abuse this assumption?

Slide 46

Unchoker Example

Round t Round t + 1

13

10

4

12

7

9

15

10

10

10

10

Slide 47

Abusing the Unchocker

• What if you really want to download from someone?

Round t Round t + 1

13

10

4

12

7

9

15

10

10

10

1020

Send a lot of
data, get 1st

place

11

Send just
enough data,
 get 4th place

10
Slide 48

BitTyrant

• Piatek et al. 2007
• Implements the “come in last strategy”
• Essentially, an unfair unchoker
• Faster than stock BitTorrent (For the Tyrant user!)

Slide 49

Sybil Attack

Round t Round t + 1

Total Capacity = 42

13

10

12

15

10

10

10

1042

Only receive
10 pieces

14 10

14

14

10

10

Divide
resources

across 3 fake
peers

Receive 30
pieces

Slide 50

Summary

• Application Layer: P2P
• Symmetric responsibility
• Self-scalability
• No central authority

• Different flavors:
• hybrid, hierarchical, completely decentralized

• Incentivize peers using game theory
• choice of chunk to download
• tit-for-tat model
• other optimizations possible

Slide 51

